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Trinary-Projection Trees
for Approximate Nearest Neighbor Search

Jingdong Wang, Naiyan Wang, You Jia, Jian Li, Gang Zeng, Hongbin Zha, and Xian-Sheng Hua

Abstract—In this paper, we address the problem of approximate nearest neighbor (ANN) search for visual descriptor indexing. Most

spatial partition trees, such as KD trees, VP trees and so on, follow the hierarchical binary space partitioning framework. The key effort

is to design different partition functions (hyperplane or hypersphere) to divide the points so that (1) the data points can be well grouped

to support effective NN candidate location and (2) the partition functions can be quickly evaluated to support efficient NN candidate

location. We design a trinary-projection-direction-based partition function. The trinary-projection direction is defined as a combination of

a few coordinate axes with the weights being 1 or −1. We pursue the projection direction using the widely-adopted maximum variance

criterion to guarantee good space partitioning and find fewer coordinate axes to guarantee efficient partition function evaluation. We

present a coordinate-wise enumeration algorithm to find the principal trinary-projection direction. In addition, we give an extension

using multiple randomized trees for improved performance. We justify our approach on large scale local patch indexing and similar

image search.

Index Terms—Approximate nearest neighbor search, KD trees, trinary-projection trees.

✦

1 INTRODUCTION

Nearest neighbor (NN) search is a fundamental problem in

computational geometry [12] and machine learning [42]. It

also plays an important role and has various applications in

computer vision and pattern recognition. The basic but essen-

tial task, content-based image and video retrieval, is a nearest

neighbor problem: to find the examples that are most similar to

the query in a large database. The nearest neighbor classifier,

relying on NN search, is frequently employed for recognition

and shape matching [18], [55]. Local feature-based object

retrieval methods include the step of searching a huge database

of patch descriptors for most similar descriptors [38]. Vision

applications, such as 3D modeling from photo databases [44]

and panorama building [8], depend on NN search for fast

matching to establish the correspondences of local feature

points among images. Graphics applications, such as texture

synthesis [13], [27], image completion [19] and so on, also
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adopt NN search to quickly find the reliable image patches.

Nearest neighbor search in the d-dimensional metric space

R
d is defined as follows: given a query q, the goal is to find an

element NN(q) from the database X = {x1, · · · ,xn} so that

NN(q) = argminx∈X dist(q,x). In this paper, we assume

that R
d is an Euclidean space and dist(q,x) = ‖q − x‖2,

which is appropriate for most problems in computer vision.

The straightforward solution, linear scan, is to compute the

distance to each point, whose time complexity is O(nd). The

time cost is too expensive for large scale high-dimensional

cases. Multi-dimensional indexing methods, such as the pop-

ular KD tree [6], [17] using branch and bound or best-first

techniques [3], [5], have been proposed to reduce the time of

searching exact NNs. However, for high-dimensional cases it

turns out that such approaches are not much more efficient (or

even less efficient) than linear scan.

To overcome this issue, a lot of investigations have been

made instead on approximate nearest neighbor (ANN) search.

There are two basic categories of ANN search. One is error-

constrained ANN search that terminates the search when the

minimum distance found up to now lies in some scope around

the true minimum (or desired) distance. For example, given

ε > 0 and δ > 0, (1 + ε)-approximate nearest neighbor

search with the query q is to find one point p so that

dist(q,p) 6 (1 + ε) dist(q,p∗), with p∗ being the true

nearest neighbor, and randomized (1+ε)-approximate nearest

neighbor search is to find such a point p with probability at

least 1−δ. There are some other error-constrained ANN search

problems, including randomized R-near neighbor reporting

that reports each R-near neighbor of q with probability 1− δ.

The other one is time-constrained ANN search that terminates

the search when the search reaches some prefixed time (or

equivalently examines a fixed number of data points). The

latter one is more practical and gives better performance, and

is the main focus of this paper. In the following, we will
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TABLE 1
Comparison of trinary-projection (TP) trees with KD trees, PCA trees, spill trees, random projection (RP) trees,

k-means trees and vantage point (VP) trees. Search order: the order of visiting data points. Branching cost: the time

cost of determining which child is next accessed at the internal node. Time overhead: the extra time cost of
accessing the point in a leaf node. Overall performance: the overall ANN search performance in terms of time cost

and precision.

TP tree KD tree PCA tree Spill tree RP tree K-means tree VP tree

search order medium poor good medium medium good good

branching cost O(1) O(1) O(d) O(d) O(d) O(d) O(d)
time overhead low low high high high high high

overall performance good medium medium poor poor medium poor

review existing widely-studied ANN search algorithms, and

then present the proposed approach.

1.1 Related Work

A comprehensive survey on ANN search algorithms can be

found from [40]. We mainly present the review on two main

categories: partition trees and hashing, which are widely-used

in computer vision and machine learning.

1.1.1 Partition Trees

The partition tree based approaches recursively split the space

into subspaces, and organize the subspaces via a tree structure.

Most approaches select hyperplanes or hyperspheres accord-

ing to the distribution of data points to divide the space,

and accordingly data points are partitioned into subsets. The

typical partition trees include KD trees [6], [17] and its

variants [3], [5], [43], box-decomposition trees (BD tree) [3],

PCA tree [45], metric trees (e.g., ball trees [33], vantage point

trees (VP tree) [54], random projection trees (RP tree) [10],

and spill trees [29]), hierarchical k-means trees [36]. Other

partition trees, such as Quadtrees [16], Octrees [53] and so

on, are designed only for low-dimensional cases.

In the query stage, the branch-and-bound methodology [6]

is usually adopted to search (approximate) nearest neighbors.

This scheme needs to traverse the tree in the depth-first manner

from the root to a leaf by evaluating the query at each internal

node, and pruning some subtrees according to the evaluation

and the currently-found nearest neighbors. The current state-

of-the-art search strategy, priority search [3] or best-first [5],

maintains a priority queue to access subtrees in order so that

the data points with large probabilities being true nearest

neighbors are first accessed.

Let us look at more details on KD trees, PCA trees, RP

trees and spill trees that adopt a hyperplane to split the

data points. KD trees use a coordinate axis to form the

partition hyperplane. In contrast, PCA trees find the principal

direction using principal component analysis (PCA) to form

the partition hyperplane, and spill-trees and RP trees select

the best one from a set of randomly sampled projection

directions. Compared with KD trees, PCA trees, RP trees and

spill trees yield better space partitions and thus lead to better

order for visiting the points because the partition hyperplanes

are less limited and more flexible than those in KD trees.

However, in the query stage, the time overhead in PCA trees,

RP trees and spill trees is larger because the branching step,

determining which child of an internal node is next visited,

requires an inner-product operation that consists of O(d)
multiplications and O(d) additions while it costs only O(1) in

KD trees. Therefore, in high-dimensional problems KD trees

usually achieve better accuracy than PCA trees and spill trees

within the same search time. In practice, KD trees are widely

adopted for computer vision applications. A comparison of

these partition trees is summarized in Table 1.

Multiple randomized KD trees, proposed in [43], generate

more space partitions to improve the search performance. In

the query stage, the search is performed simultaneously in the

multiple trees through a shared priority queue. It is shown

that the search with multiple randomized KD trees achieves

significant improvement. FLANN [34], which is probably the

most widely-used approach in computer vision, automatically

selects one from multiple randomized KD trees and hierarchi-

cal k-means trees according to a specific database and finds the

best parameters. Similarly a priority search scheme is also used

in the query stage. The proposed approach in this paper can

also be combined into the FLANN framework to automatically

tune the parameters, which will be a future work.

1.1.2 Hashing

Locality sensitive hashing (LSH) [11], one of the typical

hashing algorithms, is a method of performing ANN search

in high dimensions. It could be viewed as an application of

probabilistic dimension reduction of high-dimensional data.

The key idea is to hash the points using several hash functions

to ensure that for each function the probability of collision

is much higher for points that are close to each other than

those far apart. Then, one can determine near neighbors by

hashing the query and retrieving elements stored in the buckets

containing it. Several following works, such as LSH forest [4]

and multi-probe LSH [31], improve the search efficiency or

reduce the storage cost. LSH has been widely applied to

computer vision, e.g., for pose matching, contour matching,

and mean shift clustering, and a literature review could be

found in [42]. LSH suffers from poor access order because the

hash functions are achieved without exploiting the distribution

of data points and the points in the same bucket (with the same

hash code) are not differentiated.

Recently, a lot of research efforts have been conducted on

finding good hashing functions, by using metric learning-like

techniques, including optimized kernel hashing [20], learned
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metrics [22], learnt binary reconstruction [25], kernelized

LSH [26], and shift kernel hashing [39], semi-supervised

hashing [49], spectral hashing [51], and complementary hash-

ing [52]. Such approaches get better data partitions than LSH

as the hashing functions are learnt from the data, but still

poorer data partitions compared with partition trees because

the hierarchical way to partitioning data points in trees has

better capability to group the data points than the flat way

in hashing methods. In addition, it still suffers from that the

points in the same bucket are not differentiated. As a result,

the access order is not satisfactory and the search performance

is in practice poorer than partition trees.

1.1.3 Others

There are some other methods for ANN search, such as

embedding (or dimension reduction), neighborhood graph,

distance based methods and so on. LSH essentially is also an

embedding method, and other classes of embedding methods

include Lipschitz embedding [24] and FastMap [14]. Neigh-

borhood graph methods are another class of index structures. A

neighborhood graph organizes the data with a graph structure

connecting nearby data points, for example, Delaunay graph

in Sa-tree [35], relative neighborhood graph [47], and k-

NN (R-NN) graph [41]. The combination with KD trees

shows promising performance [50]. The disadvantage of those

neighborhood graph based methods lies in quite expensive

computation cost for constructing the data structures.

1.2 Our Approach

In this paper, we aim to improve the hyperplane-based partition

trees for ANN search. The key novelty lies in designing a

trinary-projection tree1 to well balance search efficiency and

search effectiveness, i.e., the time overhead of accessing the

points and the order of accessing them. We use a combination

of a few coordinate axes weighted by 1 or −1 (equivalently

a combination of all the coordinate axes weighted by 1, 0
or −1), called trinary-projection direction, to form the par-

tition hyperplane. We propose a coordinate-wise enumeration

scheme based on the maximum variance criterion to efficiently

pursue trinary-projection directions, guaranteeing satisfactory

space partitions.

Thanks to trinary-projection directions, our approach is

superior over current state-of-the-art methods. Compared with

KD trees, our approach is more effective to find partition

hyperplanes and hence more effective to locate NN candidates

because the trinary-projection direction is more capable of

generating more compact data partitions. The overall time

cost of evaluating the same number of leaf nodes does not

increase much because the time overhead, the time cost of

branching that includes projection operations, is comparable to

that in KD trees. Compared with PCA trees and k-means trees,

our approach is much more efficient to locate NN candidates

because the projection operation in our approach only requires

a sparse operation that consists of a few addition or subtraction

operations while PCA trees and k-means trees conduct a more

1. A short version appeared in our CVPR10 paper [23].

Algorithm 1 Partition tree construction

Procedure PartitionTreeConstruct(list pointList)
1. if pointList.empty() = true then

2. return null;
3. else

/* Select the partition direction */

4. direction ← SelectPartitionDirection(pointList);
/* Sort pointList and choose median as the pivot element */

5. select median by direction from pointList;
/* Create nodes and construct subtrees */

6. treeNode node;
7. node.partitiondirection ← direction;
8. node.partitionvalue ← pointList[median];
9. node.left ← PartitionTreeConstruct(points in pointList before me-

dian);
10. node.right ← PartitionTreeConstruct(points in pointList not before

median);
11. return node;
12. end if

expensive projection operation that includes an inner product

operation.

2 DEFINITION

In this section, we give a brief introduction to partition trees

and partition functions, and define the trinary-projection direc-

tion that combines the coordinate axes using trinary weights.

2.1 Partition Tree

A partition tree is a tree structure that is formed by recursively

splitting the space and aims to organize the data points in

a hierarchical manner. Each node of the tree is associated

with a region in the space, called a cell. These cells define

a hierarchical decomposition of the space. The root node r is

associated with the whole set of data points X . Each internal

node v is associated with a subset of data points Xv that lie

in the cell of the node. It has two child nodes left(v) and

right(v), which correspond to two disjoint subsets of data

points Xleft(v) and Xright(v). The leaf node l may be associated

with a subset of data points or only contain a single point. The

pseudo-code of constructing a partition tree (with hyperplanes

for space division) is presented in Algorithm 1.

The key problem in constructing partition trees is to find

a partition function for each internal node. For approximate

nearest neighbor search, the partition function determines if

the space is well decomposed and accordingly affects the

order of accessing the points. On the other hand, the time

complexity of evaluating partition functions determines the

search efficiency because traversing the tree involves executing

a lot of branching operations in internal nodes for which we

need to evaluate the partition functions.

2.2 Linear Partition Function

The partition function can generally be written as f(x;θ)
with θ being function parameters.. Depending on the function

design, partition trees can be categorized into binary partition

trees, including KD trees, PCA trees, RP trees, VP trees and

so on, and multi-way partition trees, including hierarchical

k-means trees, quadtrees and so on. This paper mainly fo-

cuses on binary partition trees. The partition function for
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(a) (b)

Fig. 1. Illustrating a KD tree and a TP tree in the 2D

space. Using a KD tree, coordinate axes are directly
used to formulate the projection directions to partition

the space, as shown in (a), while using a TP tree the
space can be partitioned more flexibly and can be like

the partitions shown in both (a) and (b).

KD trees, PCA trees, and RP trees, is essentially a linear

function, f(x;θ) = f(x;w, b) = wTx − b, where w is the

projection direction (also called partition direction) and b is

the partition value. The space is partitioned by the hyperplane

f(x;w, b) = 0. To determine which of the two sides a

particular point lies on, we simply evaluate the sign of the

partition function. The evaluation of such a partition function

generally requires O(d) multiplication operations and O(d)
addition operations. Particularly, its evaluation in KD trees

is much cheaper and costs only O(1), independent of the

dimension d because only one entry in w in KD trees is

valued as 1, and all the other entries are valued as 0. In VP

trees, f(x;θ) = f(x; c, r) = ‖c− x‖2 − r. In this paper, we

study the linear partition function and aim to find one function

that is able to generate compact space partitions and can be

efficiently evaluated.

2.3 Trinary Projection

The main idea of trinary projection is to make use of a linear

combination of a few coordinate axes with trinary-valued

weights to determine the linear partition function f(x;θ) =
f(x;w, b) = wTx − b. Here, w = [w1 · · ·wi · · ·wk]

T

with wi being 1, 0, or −1 is called the trinary-projection

direction. One of the advantages is that it takes O(‖w‖0)
addition (subtraction) operations to evaluate f(x;θ), which

is computationally cheap. The value b can be chosen as the

mean or the median of the projection values of the points along

the projection direction w.

Moreover, trinary projection is able to produce more com-

pact space partitions compared with KD trees using coordinate

axes to directly form the partition hyperplane because the

partition function formed from the trinary-projection direction

is more flexible. The projection direction in KD trees can

be regarded as a special trinary-projection direction, only

selecting one coordinate axis, equivalently, ‖x‖0 = 1. An

illustration of partitioning with a KD tree and a TP tree is

shown in Figure 1.

2.4 Principal Trinary-Projection Tree

A principal trinary-projection tree is a partition tree, in

which the direction w used in the partition function is the

principal trinary projection direction that leads to compact

space partitions. The principal trinary-projection direction p

is a trinary-projection direction along which the variance of

the normalized projections of the data points is maximized.

The mathematical formulation is as follows,

p = argmax
w∈T

h(w) (1)

= argmax
w∈T

Var
x∈X̃ [‖w‖−1

2 wTx], (2)

where T is the whole set of trinary projection direc-

tions, X̃ is the set of the points that is to be split, and

Var
x∈X̃ [‖w‖−1

2 wTx] is the variance of the projections along

the normalized direction ‖w‖−1
2 w.

Partitioning along the projection direction with a large

variance is known to be a competent method to partition

the data [6], [17], [45]. Consider two projection directions

p1 and p2 with variances c1 and c2, where c1 > c2 and

c1 is the largest variance. The larger variance over the data

points corresponding to the two partitions resulting from p2 is

likely to be close to c1, while that resulting from p1 is likely

to be much smaller than c1. As a result, the two partitions

obtained from the projection direction with a larger variance

tend to be more compact, and thus, roughly speaking, the

distances between the points within one partition are smaller

on average. On the other hand, as pointed out in [45], the

ball centered at the query point with the radius being the

distance to the current best nearest neighbor intersects the

partition hyperplane formed by the projection direction with a

larger variance less often, and hence fewer nodes are visited in

traversing the tree on average. Based on the above rationale,

we adopt the maximum variance criterion to determine the

partition function. We would like to remark that other criteria

may work well in some cases.

3 CONSTRUCTION

The procedure of constructing a principal trinary projection

tree is described as follows. It starts from the root that is

associated with the whole set of points, and divides the

points into two disjoint subsets using a partition function,

each corresponding to a child node. The process is recursively

performed on each new node and finally forms a tree, in

which the leaf node may contain a certain number of points.

This procedure is almost the same to that for constructing a

KD tree, and the only difference lies in the partition function

construction.

Finding the optimal principal trinary-projection direction,

i.e., solving Equation 2, is a combinatorial optimization prob-

lem, which is NP-hard. The solution space T consists of
3d−1

2 elements, which grows exponentially with respect to the

dimension d. We can simply turn the problem into the problem

of maximizing the joint probability over a Markov random

field, and then optimize it using the iterated conditional modes

approach [7] or other approaches, such as belief propagation.
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However, the weights are highly coupled together, making

those solutions unsuitable.

In the following, we first present a coordinate-wise enu-

meration algorithm to find an approximate principal trinary-

projection direction. Then we give a brief review of the

cardinality-wise enumeration algorithm proposed in [23]. Last,

we propose an extension to multiple randomized principal

trinary projection trees.

3.1 Coordinate-Wise Enumeration

One can decompose the problem formulated in Equation 2

into a sequence of d subproblems, {P1, · · · , Pi, · · · , Pd}. The

subproblem Pi is defined as follows,

max h(w) (3)

s. t. wj = 0, ∀j ∈ {i+ 1, · · · , d} (4)

w ∈ T . (5)

It can be easily validated that the subproblem Pd is equivalent

to the problem in Equation 2. Intuitively, the subproblem Pi

only exploits the first i coordinate axes to form a trinary-

projection direction. We denote the feasible solutions of Pi by

a set Ti, where Ti = {w|‖Eiw‖1 = 0,w ∈ T } and Ei is a

diagonal matrix with the first i diagonal entries being 0 and

the remaining diagonal entries being 1.

It is apparent that Ti−1 ⊂ Ti. Let Ui = Ti−Ti−1. From the

definition, Ui can be generated from Ti−1, Ui = {w|wi ∈
{1,−1},w ⊙ ei ∈ Ti−1}, where ⊙ is an coordinate-wise

product operator and ‖ei‖1 = d− 1 and its i-th entry is equal

to 0. Intuitively, for each solution w ∈ Ti−1, we can set wi to

be 1 and −1 to form Ui. This suggests that we incrementally

enumerate the feasible solutions T in order of increasing i

from T1 to Td, which is called coordinate-wise enumeration.

Searching for the true principal trinary-projection direction

with this incremental enumeration manner still requires to

check all the 3d−1
2 feasible solutions. The expensive time

cost makes it impractical to find the optimal solution. Instead,

we are willing to settle for an approximate principal trinary-

projection direction, and enumerate a subset of possibly better

feasible solutions coordinate-wisely. We show that there is

an optimal order of exploiting coordinate axes to form the

feasible solutions. Moreover, we analyze the performance

of our approximation algorithm by providing proper upper

bounds of the difference between the approximate solution

and the optimal solution.

Consider the d subproblems {P1, · · · , Pd}. It can easily be

validated that maxw∈T1
h(w) 6 maxw∈T2

h(w) 6 · · · 6
maxw∈Td

h(w), since T1 ⊂ T2 ⊂ · · · ⊂ Td. In addition,

maxw∈Ti
h(w) is lower bounded, which is stated in the

following theorem. The proof of the theorem can be found

from the supplemental material.

Theorem 1. For coordinate-wise enumeration with the order

of coordinate axes B = {b1, . . . ,bd}, the optimal result

of the problem Pi is lower bounded: maxw∈Ti
h(w) >

maxw∈Td
h(w)−

∑d

j=i+1 h(bj).

Let us consider ordered coordinate axes B∗ = {b∗
1, . . . ,b

∗
d},

a permutation of {b1, . . . ,bd}, where h(b∗
1) > · · · >

Algorithm 2 Coordinate-wise enumeration

/* D: the dimension; topD: the number of used coordinate axes; r: the
threshold of the ratio between the variance of the best direction and the
maximum variance gain; topK: the number of directions kept in each
enumeration; */

Procedure CoordinateWiseEnumeration(list pointList)
/* Compute variances for all coordinate axes */

1. axesVariances[1 · · ·D] ← ComputeVariances(pointList);
/* Record the possible maximum variance gain */

2. remainedVariance ← ComputeSum(axesVariances[1 · · ·D]);
/* Sort the axes in the variance-increasing order */

3. C[1 · · ·D] ← SortAxes(axesVariances[1 · · ·D]);
4. directions ← ∅;
5. bestDirection ← null;
6. i ← 0;
7. while (i < topD and directionVariances(bestDirection) / remainedVari-

ance < r) do

8. i ← i + 1;
9. directions ← MergeEnumerations(directions, directions + C[i], direc-

tions - C[i]);
10. directionVariances ← ComputeVariances(directions, axesVariances

[1 · · ·D]);
/* Keep topK directions */

11. directions ← Prune(directions, topK);
12. bestDirection ← FindMaximum(directions, directionVariances);

/* Update the possible maximum variance gain */
13. remainedVariance ← remainedVariance - axesVariances[i];
14. end while

15. return bestDirection;

h(b∗
d), and another permutation B′ = {b′

1, . . . ,b
′
d}. We

can easily prove that
∑d

j=i+1 h(b
∗
j ) 6

∑d

j=i+1 h(b
′
j)

for any i ∈ {1, · · · , d − 1}. This implies that the

lower bound of maxw∈T ∗
i
h(w) for B∗ is not less than

that of max
w∈T ′

i
h(w) for B′, i.e., maxw∈Td

h(w) −∑d

j=i+1 h(b
∗
j ) > maxw∈Td

h(w) −
∑d

j=i+1 h(b
′
j). In other

words, the optimal result of Pi with respect to B∗ has the

largest lower bound, and hence is potentially a better solution.

This suggests an optimal coordinate-wise enumeration scheme

exploiting the coordinate axes in order of decreasing variances,

which is able to find better solutions quickly.

In the optimal coordinate-wise enumeration scheme, we

have a property how the solution of Pi approximates the global

principal trinary-projection direction (the one of Pd) as stated

in Corollary 1, which is derived from Theorem 1.

Corollary 1. The variance deficiency, i.e., the difference of the

variance along the principal trinary projection direction for

the subproblem Pi from that along the global principal trinary-

projection direction, is upper bounded: maxw∈T h(w) −
maxw∈T ∗

i
h(w) 6

∑d

j=i+1 h(b
∗
j ).

This corollary indicates that we can avoid an expensive

process of computing the global solution and only conduct

a cheap process (O(d)) of computing the summation of the

variances over all the coordinate axes to estimate the approx-

imation degree. This suggests that we can early terminate the

enumeration at the problem Pi if the deficiency upper bound∑d

j=i+1 h(b
∗
j ) is small enough.

The early termination scheme reduces the time cost from

O(3d) to O(3d̄) if the enumeration process stops at the prob-

lem Pd̄ for which the variance deficiency is small enough or

d̄ reaches a fixed number. But the time cost is still expensive.

To reduce the cost furthermore, we introduce a practical
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coordinate-wise enumeration scheme. Let us compare the

number of the feasible solutions, Ti−1 and Ti, for subproblems

Pi−1 and Pi, respectively. We have that |Ti| = |Ti−1 ∪ Ui| =
|Ti−1|+ |Ui|. This suggests a speedup algorithm by generating

a smaller set Ui. Recall that Ui = {w | wi ∈ {1,−1},w⊙ei ∈
Ti−1} and |Ui| = 2|Ti−1|. We use a subset of Ti−1 to form Ui.

Specifically, we select a small number (g) of leading trinary-

projection directions with the largest variances, T̃i−1, to form

Ũi = {w|wi ∈ {1,−1},w ⊙ ei ∈ T̃i−1}. In this way, the

time complexity is reduced from an exponential one O(3d̄) to

a polynomial one O(gd̄). The pseudo-code of coordinate-wise

enumeration is presented in Algorithm 2.

3.2 Cardinality-Wise Enumeration

We give a brief review of the approach presented in [23]. One

can decompose the problem of maximizing h(w) into a se-

quence of subproblems, {P1, · · · , Pd}, where Pi corresponds

to maximizing h(w) subject to ‖w‖1 6 i and w ∈ T . It can

be easily validated that the subproblem Pd is equivalent to the

problem in Equation 2. We denote the feasible solutions of the

subproblem Pi by Ti = {w | ‖w‖1 6 i,w ∈ T }. It can be

easily shown that Ti = Ti−1 ∪ Ui with Ui , {w | ‖w‖1 = i}.

Ui can be easily generated from Ui−1, Ui = {w | ‖w− w̄‖ =
1, ∃w̄ ∈ Ui−1}. This suggests the so-called cardinality-wise

enumeration scheme, enumerating the feasible solutions in

order of increasing the number of the coordinate axes that

are used to form the partition function.

Instead of solving the expensive problem Pd, the approach

in [23] solves the subproblem Pd̄ to get an approximate solu-

tion. Here we present Theorem 2 to show the approximation

quality of the approximate solution Pd̄, compared with the

optimal solution. The proof of the theorem can be found from

the supplemental material.

Theorem 2. For cardinality-wise enumeration, the optimal

result of the problem Pd̄ is lower bounded: maxw∈T
d̄
h(w) >

maxw∈Td
h(w) −

∑d

i=d̄+1 h(b
∗
i ), where {b∗

1, . . . ,b
∗
d} is a

permutation of coordinate axes {b1, . . . ,bd} and h(b∗
1) >

· · · > h(b∗
d).

The approximate solution reduces the time cost from an

exponential one O(3d) to a polynomial one O(dd̄), which is

still very large. A further approximation method is introduced

in [23]. In that method, we select a small number (d̄) of

leading coordinate axes with the largest variances and keep

only g trinary-projection direction candidates, to form Ui,

which results in small time cost O(gd̄2).

3.3 Multiple Randomized TP Trees

We propose to make use of multiple randomized TP trees to

organize the points. It has been shown that the simultaneous

search over multiple trees through a shared priority queue is

superior to the priority search over a single tree [43], [23].

The simple approach for constructing a randomized TP tree

is to randomly sample the weights w. For example, one can

sample the weight wi for each coordinate axis from {−1, 0, 1}
with probabilities {p−1, p0, p1}. The probabilities could be the

same, p−1 = p0 = p1 = 1
3 . Or they can be computed from a

Gaussian-like distribution pa ∝ 1
σ
√
2π

exp(− a2

2σ2 ), where α =
−1, 0, 1 and σ is used to adjust the weights, further normalized

so that p−1 + p0 + p1 = 1. The latter one can be regarded

as an approximate to the random projection tree [10]. One

drawback is that those approaches are independent to the data

distribution. Instead, we propose to modify the coordinate-wise

enumeration scheme to generate randomized multiple TP trees.

One candidate scheme is to randomly sample one from

several top candidate principal trinary-projection directions

collected from the coordinate-wise enumeration scheme. This

straightforward scheme is however time-consuming for gener-

ating multiple trees. Instead, we propose a coordinate-wise

random enumeration scheme to sample a principal trinary-

projection direction, which may result in lower search quality

for a single tree, but can still guarantee high search quality

due to the complementarity of multiple trees.

We permute the coordinate axes in order of decreasing

variances, b∗
1, · · · ,b

∗
d, where h(b∗

1) > · · · > h(b∗
d). The

coordinate-wise random enumeration scheme is described as

follows. We first randomly sample a coordinate axis from the d̄

leading coordinate axes, forming a trinary projection direction

v1 for the first iteration. For discussion convenience, we as-

sume v1 = b∗
j . Then, we sequentially consider the remaining

coordinate axes {b∗
1, · · · ,b

∗
j−1,b

∗
j+1, · · · ,b

∗
d}. We denote the

trinary-projection direction by vt at the t-th iteration. For the

(t+1)-th iteration considering the next coordinate axis b, there

are three candidates for vt+1, Ct = {vt,vt +b,vt −b}. The

sampling weight for each candidate c ∈ Ct is computed from

the variances, p(c) = h(c)∑
w∈Ct

h(w) . In our implementation, we

found that the coordinate axes with small variances contribute

little to space partitioning and add a little more time cost in the

query stage. So we stop the iteration when the top d̄ coordinate

axes have been considered.

4 ANALYSIS

4.1 Construction Time Complexity

The computation required to find the partition function for

a node v associated with nv points is analyzed as follows. It

consists of the computation of the covariances and the enumer-

ation of feasible trinary projection directions. Computing the

variances for all the d coordinate axes requires O(dnv) time,

and computing the covariances for the top d̄ coordinate axes

requires O(d̄2nv) time. The enumeration cost is independent

of the number of points and only depends on the number of top

coordinate axes d̄, denoted by O(ed̄), which will be analyzed

in detail later. The above analysis indicates that the time cost

for the node v includes two parts: O(ed̄) and O((d+ d̄2)nv).
Consider the first part, there are O(n) nodes in the tree,

then the time cost contributed by the first part is O(ned̄).
Considering the tree built in the case of using the median as

the partition value is a balanced tree with the height logn
and the number of points in each level is n, the time cost for

each level contributed by the second part is O((d+ d̄2)n). In

summary, the total time cost is O(n((d + d̄2) logn+ ed̄)).
Let us look at the enumeration cost ed̄. Coordinate-wise

enumeration totally generates O(gd̄) candidate directions,

where g is the number of the candidate directions generated
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for each enumeration iteration. Evaluating the variance of

each one using an incremental manner takes O(d̄) time.

Thus, coordinate-wise enumeration takes ed̄ = O(gd̄2) and

coordinate-wise random enumeration takes O(d̄2).

4.2 Storage Cost

The tree structure needs to store the data points and partition

functions for internal nodes. Generally, a partition function

needs O(d), e.g., for PCA-trees and random projection trees.

The trinary-projection direction in our approach is sparse, and

only costs O(d̄). The total storage cost is O(nd +mnd̄) for

m trees, where nd is the cost for storing the features of data

points.

4.3 Search Time Complexity

To find approximate nearest neighbors of a query point, a top-

down searching procedure is performed from the root to the

leaf nodes. At each internal node, it is required to inspect

which side of the partition hyperplane the query point lies

in, then the associated child node is accordingly accessed.

The descent down process proceeds till reaching a leaf node.

The data point associated with the first leaf node is the first

candidate for the nearest neighbor, which is not necessarily

the true nearest neighbor. It must be followed by a process

of iterative search, in which more leaf nodes are searched for

better candidates. The widely used scheme with high chances

to find true nearest neighbors early is priority search so that

the cells are searched in order of increasing their distances

to the query point. The ANN search terminates when a fixed

number of lead nodes are accessed. The pseudo-code of the

search procedure is presented in Algorithm 3.

In the following, we show the time cost for ANN search

by bounding the number of accessed leaf nodes. Accessing

a leaf node in the priority search requires the descent from

an internal node to this leaf node, then the descent needs

to check O(log n) internal nodes. Handling each internal

node consists of the evaluation of the corresponding partition

function, computing the lower bound of the distance to the cell

that is to be inserted to the priority queue, and the insertion

and extraction operations on the priority queue. The evaluation

of the partition function costs only O(d̄). Using the binomial

heap for the priority queue, it takes amortized O(1) time to

insert and extract a cell. In our experiments, we implemented

the priority queue as a binary heap. Theoretically, the insertion

operation may take O(log n) time with a binary heap, but

we observed that they took only O(1) time on average. The

computation of the lower bound of the distance of a query

to a cell costs only O(1) time. Therefore, assuming that one

leaf node contains only one data point, the time cost when

accessing N leaf nodes is O(Nd̄ logn + Nd), where Nd is

the cost of computing the distances between the query and the

data points.

5 DISCUSSION

5.1 Embedding vs. Space Partition

In metric embedding, if we project the data points to ran-

domly sampled trinary-projection directions (this is also called

Algorithm 3 Partition tree query

Procedure PartitionTreeQuery(Point q, treeNode root)
1. PriorityQueue queue;
2. topElement.node ← root;
3. topElement.distance ← 0;
4. minDistance ← INF;
5. accessedPointNumber = 0;

/* maxAccessedPointNumber: the maximum number of accessed points
*/

6. while accessedPointNumber < maxAccessedPointNumber do

/* Descend down to a leaf node */

7. while topElement.node.IsLeaf() = false do
8. left ← topElement.node.left;
9. right ← topElement.node.right;

10. direction ← topElement.node.partitiondirection;
11. value ← topElement.node.partitionvalue;
12. projection ← q along direction;
13. if (projection < value) then

14. topElement.node ← left;
15. newElement.node ← right;
16. else

17. topElement.node ← right;
18. newElement.node ← left;
19. end if

/* Estimate the lower bound of the distance of the query to the

cell */
20. newElement.distance ← topElement.distance + (projection -

value)2 /‖direction‖2
2

;
21. queue.insert(newElement);
22. end while
23. accessedPointNumber ← accessedPointNumber + 1;
24. currentDistance ← ComputeDistance(topElement, q);
25. if currentDistance < minDistance then
26. minDistance ← currentDistance;
27. nearestNeighbor ← topElement.point;
28. end if

29. topElement ← queue.top();
30. queue.pop();
31. end while

32. return nearestNeighbor;

database-friendly random projection [1]), the distortion of

the embedding is very close to 0 (all pairwise distances are

approximately preserved). This is guaranteed by the theorem

in [1], which is an analogue of the Johnson−Lindenstrauss

lemma for random projections: Given a set X of n points in

R
d, and ε, β > 0, let k0 = 4+2β

ε2

2
− ε3

3

logn and k > k0. Let

f(x) =
√
3√
k
RTx, where R is a matrix of size d × k. The

entry rij is sampled from {1, 0, -1} with the corresponding

probabilities { 1
6 ,

2
3 ,

1
6}. Then, with probability at least 1−n−β,

(1− ε)‖x1 −x2‖
2
2 6 ‖f(x1)− f(x2)‖

2
2 6 (1+ ε)‖x1 −x2‖

2
2

for all x1,x2 ∈ X .

In this paper, we use the trinary-projection directions for

partitioning the data points rather than for metric embedding.

Assume that the tree is formed by adopting the same trinary

projection for the nodes in the same depth. As the goal, the

points lying in the same subspace (cell) generated by the tree

are expected to be compact in the embedding space. According

to the above theorem that indicates that the distances computed

over the embedding space can approximate the distances

computed over the original space, it can be expected that

those points are likely to be compact in the original space.

This implies that the points in the same subspace are very

likely to be near neighbors and in other words a query point

lying in a subspace can potentially find the nearest neighbors
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from the subspace. To obtain a better distance approximation,

the projection direction of each internal node can be estimated

adaptively from the points associated with the node, discarding

the constraint of using the same trinary-projection direction for

the nodes with the same depth.

5.2 Partition Value

Let us discuss the choice of the partition value b in the partition

function f(x;w, b). The partition value is usually determined

according to the projection values. Several choices, such as

mean, median and bisector, have been discussed in [45]. It is

shown that selecting the median value as the partition value,

resulting in a balanced tree [17]. However, it should be noted

that there is no guarantee that one choice will always generate

the optimal search performance in all cases. A learning-based

approach is proposed in [9] to determine the partition value.

In our experiments, we find that adopting the mean as the

partition value (the resulting TP tree is nearly balanced in our

experiments) produces similar (better in some cases) search

results and takes less construction time.

5.3 Orthogonal TP Tree

The priority search procedure relies on maintaining a priority

queue so that we can access the cells in order efficiently. The

lower bound of the distance of the query to the cell that is pos-

sible to be accessed next is used as the key to maintain the pri-

ority queue. The exact lower bound requires the computation

between a point and a hyperpolygon, which is generally time-

consuming. As pointed in [2], the computation can be much

more efficient if the projection directions along each path from

the root to a leaf node are parallel or orthogonal, which we call

the orthogonality condition. To make an orthogonal TP Tree,

i.e., a TP tree satisfying orthogonality condition, we need to

modify the enumeration scheme by checking if the candidate

direction is orthogonal to or parallel with all the projection

directions of its ancestors, which results in an increase of the

time cost by a log n factor. In our experiments, we find that

ANN search is still very good without any performance loss

even if the orthogonality condition does not hold. Therefore,

we simplify the implementation by intentionally ignoring the

orthogonality condition and compute an approximate lower

bound by directly accumulating the distance to the partition

hyperplane with the distance lower bound of its parent node.

5.4 Adaptation to Low Dimensional Manifold

Space partitioning is one of key factors that affect the order of

accessing the data points and determines the search efficiency.

It is shown in [48] that PCA tree can reduce the diameter of

the cell in a certain ratio given the low covariance dimension

assumption, while KD tree cannot adapt to low dimensional

manifolds. With regard to the maximum variance criterion,

the principal direction in PCA tree is the best. The solution

space of TP trees is apparently much larger than that of

KD trees, and the principal trinary-projection direction is

a better approximation to the principal direction than any

coordinate axis. Although it remains unclear if TP tree adapts

to low dimensional manifolds, our experiments show that our

approach can produce good space partitioning that leads to

better order to access data points.

5.5 Approximate and Exact NN Search

The proposed principal and randomized TP trees can also

be applied to answer exact NN queries if the orthogonality

condition holds. The priority search can be terminated when

the minimum distance lower bound in the priority queue is

larger than the best distance found currently, and thus the best

NN found so far is the exact NN. A (1 + ε)-approximate NN

can be also found when the minimum distance in the priority

queue is larger than (1+ε)dmin, where dmin is the best distance

found so far. We have a theorem for (1 + ǫ)-approximate NN

search over an orthogonal TP tree given as follows. The proof

can be found from the supplemental material.

Theorem 3. Consider a set X of data points in R
d indexed

by an orthogonal trinary projection tree. Given a constant

ǫ > 0, there is a constant cd,ε 6 ⌈1 + 2α
√
d

ε
⌉d, where α is

the largest of aspect ratio of any cell, such that a (1 + ε)-
approximate nearest neighbor of a query q can be reported in

O(dcd,ε log n) time, and a sequence of k (1+ ε)-approximate

nearest neighbors of a query q cab be computed in O(d(cd,ε+
k) logn) time.

The lower bound of the distance between the query and

the cell may not be tight enough, and hence the performance

of exact NN and (1 + ε)-approximate NN search is not

satisfactory. As a result, ANN search within a time budget

is practically conducted, equivalently terminating the search

when a fixed number of data points have been accessed.

6 EXPERIMENTAL RESULTS

6.1 Data Sets

Caltech. The Caltech 101 data set [15] contains about 9000
images and has been widely used for image classification. We

extract the maximally stable extremal regions (MSERs) [32]

for each image, and compute a 128-dimensional SIFT fea-

ture [30] for each MSER. On average, there are about 400
SIFT features for each image. In this way, we get a data

set containing around 4000K SIFT feature points. In our

experiment, we randomly sample 1000K points to build

the reference data set. To formulate the query data set, we

randomly sample 100K points from the original data points

and guarantee that these query points do not appear in the

reference data set.

Ukbench. The recognition benchmark images [36] consist of

2550 groups of 4 images each, most of which are about CD

covers, indoor images and similar or identical objects, taken

at different views. The images are all of size 640× 480. We

also extract MSERs and represent each MSER with a 128-

dimensional SIFT feature. We randomly sample 1000K SIFT

features for the reference data set, and 100K SIFT features as

queries.

Notre Dame. The patch data set [21], associated with the

Photo Tourism project [44], consists of local image patches of
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TABLE 2
The description of the data sets used in our experiments.

Caltech Ukbench Notre Dame Oxford Tiny images PCA tiny images

dimension 128 128 128 128 384 64

#(reference points) 1000K 1000K 400K 10M 1000K 1000K

#(query points) 100K 100K 60K 100K 100K 100K

Flickr photos of various landmarks. The goal is to compute

correspondences between local features across multiple im-

ages, which can then be provided to a structure-from-motion

algorithm to generate 3D reconstructions of the photographed

landmark [44]. Thus, one critical sub-task is to take an

input patch and retrieve its corresponding patches within any

other images in the database, which is essentially a large-

scale similarity search problem. We use 400K image patches

(represented by a 128-dimensional SIFT feature) from the

Notre Dame Cathedral as the reference data set and 60K
image patches as queries.

Oxford. The Oxford 5K data set [38] consists of 5062 high

resolution images of 11 Oxford landmarks. There are about

16M SIFT features extracted from those images. We randomly

sample 10M features as the reference data set and other 100K
features as queries.

Tiny images. The tiny images data set consists of 80 million

images, introduced in [46]. The sizes of all the images in

this database are 32 × 32. Similar to [26], we use a global

GIST descriptor [37] to represent each image, which is a

384-dimensional vector describing the texture within localized

grid cells. We randomly sample 1000K images to build

the reference data set and other 100K as queries from the

remaining images. We also generate a data set, PCA tiny

images, which is produced by reducing the dimension of the

GIST feature to 64 using PCA.

The description of the data sets is summarized in Table 2.

All the features are byte-valued except that the features in

PCA tiny images are int-valued.

6.2 Evaluation Metric

We use the precision score to evaluate the search quality.

For k-ANN search, the precision is computed as the ratio

of the number of retrieved points which are contained in the

true k nearest neighbors to k. The true nearest neighbors are

computed by comparing each query with all the data points

in the reference data set. We compare different algorithms by

calculating the search precisions given the same search time,

where the search time is recorded by varying the number of

accessed data points. We report the performance in terms of

search time vs. search precision. All the results are obtained

with 64 bit programs on a 3.4G Hz quad core Intel PC with

16G memory.

6.3 Empirical Analysis

We present empirical results to show how various factors in

our approach affect search precision and search efficiency.
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Fig. 2. Construction cost. (a) and (b) show the compar-

ison for construction cost (seconds) vs. different num-

bers of axes using coordinate-wise enumeration and
cardinality-wise enumeration over Notre Dame and Cal-

tech. (c) Construction cost vs. different numbers of trees

for coordinate-wise enumeration.

6.3.1 Construction Cost

Figure 2 reports the time cost of constructing trinary projection

trees when varying the number of used axes and the number

of trees. From Figures 2(a) and 2(b) (one TP tree is built), one

can see that the construction cost using more axes becomes

larger, which conforms to the complexity analysis. In terms of

the construction cost, the coordinate-wise enumeration scheme

proposed in this paper is better than the cardinality-wise

enumeration scheme that was used in [23]. From Figure 2(c)

(5 axes are used), we can observe that the time taken by the

coordinate-wise enumeration scheme increases linearly as the

number of trees.

6.3.2 Coordinate-Wise Enumeration vs. Cardinality-

Wise Enumeration

We conduct experiments to compare the search performance

over TP trees constructed using different enumeration schemes

with the same parameters, d̄ = 15 leading axes used, g = 15
trinary-projection directions kept in each enumeration itera-

tion, and 1 NN searched. From the comparison shown in

Figure 3, we can see that the coordinate-wise enumeration

scheme performs the best in terms of both search efficiency

and precision, which is consistent to the previous analysis.

Random enumeration means randomly sampling the trinary-

projection direction w and the partition value b. Considering

the less construction time using coordinate-wise enumeration,

we choose it in the implementation.

6.3.3 Dominant Axes

We present the results to show how the number of axes used

to form the projection direction for each internal node affects

the search performance. The comparisons, obtained when one

TP tree is used, are presented in Figure 4. There are several

observations. Using more axes boosts the performance, and

the improvement is even more significant especially when

the data is in high dimensions as shown in Figure 4(b). The
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Fig. 3. Illustrating search performance using coordinate-
wise enumeration and cardinality-wise enumeration in

terms of precision vs. average query time (milliseconds)

over (a) Notre Dame and (b) Caltech.
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Fig. 4. Illustrating the performance of using different

numbers of axes over (a) Notre Dame and (b) tiny images.

performance improvement becomes less significant when the

number of used axes becomes larger.

6.3.4 Multiple Randomized Trees

This part presents experimental results to show using mul-

tiple randomized trees can lead to significant performance

improvements. Figure 5 illustrates the comparisons over 1,

2, 4, 8, and 16 trees with 15 leading axes used for tree

construction. As we can see, the performance with more trees

is better. The precision improvement is quite significant when

taking less query time. With more query time, the precision

improvement becomes less significant. We can also see that

the performances of 8 trees and 16 trees are very close.

6.4 Comparisons

We compare the search performance of our approach with

state-of-the-art ANN search algorithms.

PCA tree. The PCA tree [45] is a binary spatial partition tree

that chooses the principal direction as the projection direction

at each internal node. It can yield compact space partitions.

However, the projection operations at the internal nodes are

very time-consuming, as it requires an inner product operation

that takes O(d) time. Consequently, the search performance is

deteriorated. The priority search is used as a speedup trick in

the implementation.

Vantage point tree. A vantage point (VP) tree [54] is a binary

spatial partition tree that at each internal node segregates data

points by choosing a position (the vantage point) in the space

and dividing the data points into two partitions: those that are

nearer to the vantage point than a threshold, and those that are
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Fig. 5. Illustrating search performance when using dif-

ferent numbers of trees over (a) Notre Dame and (b)
Caltech.

not. The priority search is also used as a speedup trick in the

implementation.

Spill tree. The spill tree [28] is a type of random projection

tree. It generates the projection direction randomly. A key

point of spill tree is that it allows overlapping partitions around

the separating hyperplane. We implement the algorithm by

following the description in [28].

Box-decomposition tree. This box-decomposition tree,

shorted as BD tree [3], modifies the KD tree mainly in

that, in addition to the splitting operation, there is a more

general decomposition operation called shrinking for space

partitioning. More details can be found from [3]. We report the

experimental results by running their public implementation

with a slight modification making the search proceed till a

fixed number of points are accessed.

FLANN. FLANN [34] is a combination of multiple random-

ized KD trees and hierarchical k-means trees. It seeks the best

configuration between them. We assume that its performance

is better than KD trees and hierarchical k-means trees, thus

we only report the results from FLANN.

Hashing. We also compare the performance with the hashing

methods, E2LSH [11], multi-probe LSH [31], LSH forest [4],

and spectral hashing [51]. The key idea of LSH is to hash

the points using several hash functions to ensure that for each

function the probability of collisions is much higher for objects

that are close to each other than for those that are far apart.

Then, one can determine near neighbors by hashing the query

point and retrieving elements stored in buckets containing that

point. It has been shown in [34] that randomized KD trees can

outperform the LSH algorithm by about an order of magnitude.

Multi-probe (MP) LSH is built on the LSH technique, but it

intelligently probes multiple buckets that are likely to contain

query results in a hash table. LSH forest represents each hash

table by a prefix tree so that the number of hash functions per

table can be adapted for different approximation distances.

Spectral hashing aims to learn the hash functions according

to the data distribution to build an effective hash table. As

hashing methods are slower than our approach by about an

order of magnitude, we report the comparisons with hashing

based methods separately for clarity.

We first report the results of searching 1-NN, 5-NN, 10-

NN, 20-NN, 50-NN and 100-NN on three data sets: 1000K
128-dimensional SIFT features over Caltech and Ukbench,

and 1000K 384-dimensional GIST features over Tiny images.
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Fig. 6. Performance comparison over 1000K 128-dimensional features from Caltech. (a) 1-NN, (b) 5-NN, (c) 10-NN,

(d) 20-NN, (e) 50-NN and (f) 100-NN.

Searching for a small number of NNs is useful for patch

matching and for more NNs is useful for similar image

search. Our approach builds the tree using the mean as the

partition value due to the cheap construction cost, uses 15
dominant axes and 10 random trees. The results of other

approaches are obtained by using the well-tuned or auto-

configured (if applicable) parameters. The comparisons are

shown in Figures 6, 7 and 8, respectively. The horizontal

axis corresponds to average query time (milliseconds), and

the vertical axis corresponds to search precision.

From the results with 128-dimensional features as shown in

Figures 6 and 7, our approach outperforms other approaches.

Particularly, in the case of short query time, the superiority

of our approach is much more significant, which is a desired

property in the real search problems. The comparisons over

1000K high-dimensional GIST features are shown in Figure 8.

The search for 384-dimensional features is actually more chal-

lenging. It can be seen that the improvement of our approach

over other approaches is much more significant than for low-

dimensional SIFT features. The precision of our approach is

consistently higher than other methods at least 10% except

PCA tree, which is a very significant improvement. One can

see that the superiority of our approach, for searching different

numbers of nearest neighbors, is consistent in the cases of both

low and high dimensional cases. In contrast, other approaches

cannot consistently produce satisfactory results.

We also conduct the experiments over a larger scale data set,

10M SIFT features over Oxford, shown in Figure 9. In this

case, due to very high construction cost and much memory

cost for PCA tree and Spill tree, we only report other three

approaches. It can be seen that our approach consistently gets

superior search performance.

Besides, we conduct the experiments to illustrate how

preprocessing through PCA dimension reduction affects the

search performance. We first do the PCA dimension reduction

for the reference data set (tiny images) over which principal

directions are computed, and get 64-dimensional features,

forming a data set (PCA tiny images). We construct the index

structure over 64-dimensional features. In the query stage,

each query is also reduced by PCA to a 64-dimensional

feature. The distances to the data points in the leaf nodes are

evaluated over the original features and the ground truth is

also computed over the original features. As Spill tree and VP

tree perform very poorly, we only report the results of other

three approaches. From the result shown in Figure 10, one

can observe that our approach performs the best. Compared

with the result without dimension reduction shown in Figure 8,

the performances of all the approaches get improved. In

comparison, the improvement of PCA tree is relatively small.

This is as expected because PCA tree already has selected the

principal directions for space partition while our approach as

well as BD tree benefit a lot from the better coordinate axes

produced by PCA dimension reduction.

The above experimental results indicate that (1) our ap-

proach achieves a large improvement in the case of searching

a small number of nearest neighbors and (2) the improvement

is relatively small in the case of searching a large number of

nearest neighbors. The first point implies that our approach
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Fig. 7. Performance comparison over 1000K 128-dimensional features from Ukbench. (a) 1-NN, (b) 5-NN, (c) 10-NN,

(d) 20-NN, (e) 50-NN and (f) 100-NN.

is powerful to discriminate the points that are near to the

query. The second point means that most approaches are able

to discriminate the near neighbors from the far neighbors.

Last, we report the comparison with hashing methods. As

hashing methods are very slow, we report the performance

with the time axis in a logarithmic scale, in order to make

the comparisons clear. We include the results searching for

1-NN and 20-NN, over two data sets: Caltech with 128-

dimensional features and tiny images with 384-dimensional

features as we observed that the conclusions for other k-NNs

and other data sets remain valid. The comparisons are shown in

Figure 11. It can been observed that hashing methods perform

poorly, and are much slower (even several orders) than our

approach. MP LSH and SH perform the second best, which

is reasonable because MP LSH performs the best-first search

scheme and SH learns better space partitioning than other hash

algrothms. The superiority of our approach comes from good

space partitioning and the best-first search scheme.

7 CONCLUSION

In this paper, we present a novel hierarchical spatial partition

tree for approximate nearest neighbor search. The key idea is

using a trinary projection direction, a linear combination of a

few coordinate axes with weights being −1 or 1, to form the

partition hyperplane. The superiority of our approach comes

from two aspects: (1) fast projection operation at internal

nodes in traversing, only requiring a few addition/subtraction

operations, which leads to high search efficiency, and (2)

good space partition guaranteed by a large variance along the

projection direction for partitioning data points, which results

in high search accuracy. We will make the data sets used

in our experiments as well as the implementation of our ap-

proach publicly available from the project page http://research.

microsoft.com/∼jingdw/SimilarImageSearch/tptree.html.
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Fig. 9. Performance comparison over 10M 128-dimensional features from Oxford. (a) 1-NN, (b) 5-NN, (c) 10-NN, (d)

20-NN, (e) 50-NN and (f) 100-NN.
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Fig. 10. Performance comparison over PCA tiny images. (a) 1-NN, (b) 5-NN, (c) 10-NN, (d) 20-NN, (e) 50-NN and (f)

100-NN.
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Fig. 11. Performance comparison with various hashing methods. (a) and (b) correspond to the comparison of 1-NN

and 20-NN over Caltech, and (c) and (d) correspond to the comparison of 1-NN and 20-NN over tiny images.
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