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Abstract— Accurate road segmentation is a prerequisite
for autonomous driving. Current state-of-the-art methods are
mostly based on convolutional neural networks (CNNs). Nev-
ertheless, their good performance is at expense of abundant
annotated data and high computational cost. In this work,
we address these two issues by a self-paced cross-modality
transfer learning framework with efficient projection CNN.
To be specific, with the help of stereo images, we first tackle
a relevant but easier task, i.e. free-space detection with well
developed unsupervised methods. Then, we transfer these useful
but noisy knowledge in depth modality to single RGB modality
with self-paced CNN learning. Finally, we only need to fine-
tune the CNN with a few annotated images to get good
performance. In addition, we propose an efficient projection
CNN, which can improve the fine-grained segmentation results
with little additional cost. At last, we test our method on KITTI
road benchmark. Our proposed method surpasses all published
methods at a speed of 15fps.

I. INTRODUCTION

Road segmentation (Fig. 1a) refers to the task of label-
ing road regions from outdoor images, which is a crucial
task in computer vision and robotics field. It has extensive
applications such as autonomous driving [14] and mobile
robot monocular vision navigation [29]. Such systems require
high robustness, high efficiency and high accuracy to adapt
various complex road patterns. Thanks to the advancement
of deep learning, especially convolutional neural network
(CNN), the performance of semantic segmentation has sig-
nificantly improved over the last few years [28], [8], [42].
A key benefit of deep learning methods is its ability to
extract complex, high-level features from massive training
data. CNNs are also widely used for road segmentation and
achieve great success [1], [35], [26].

Large-scale dataset is necessary for deep learning. How-
ever, manually annotating segmentation labels is time-
consuming and cumbersome. For example, it was reported
that it took a human labeler 90 minutes per image to
annotate high-quality semantic labels for Cityscapes dataset
[10], [41]. Such heavy labor prohibits building large-scale
datasets for semantic segmentation. Consequently, popular
image segmentation datasets [12], [10], [7] only consist of
hundreds or thousands of images, which is at least two orders
of magnitude smaller than other visual recognition tasks,
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Fig. 1. (a) Example image with annotated road region. (b) Example image
with annotated free-space region. Note that the segmented areas are shown
in red.

such as image classification or object detection dataset [11].
Thus, for a special yet important segmentation task – road
segmentation, can we utilize its own characteristics to reduce
the labor of human annotation? Our answer is affirmative.

To achieve such goal, we need to introduce another closely
related task – free-space detection (Fig. 1b), which segments
the drivable space (or non-obstacle space) from images. Road
segmentation aims at partitioning road regions, while free-
space detection segments the flat drivable regions (cf. Fig.
1a and Fig. 1b). Though some areas are drivable, vehicles
are not allowed in these areas based on the traffic rules
or conventions (e.g. the grass in Fig. 1). Different from
road, free-space is not related to the semantic meaning
of an area, researchers have been dedicated to develop
unsupervised methods [4], [3], [25] for this task in the last
decade. Among those, most state-of-the-art methods utilize
depth information from stereo images to estimate obstacle
positions, and liberate human labors from annotating training
labels.

In this work, we address the task of robust and accurate
road segmentation from single image in real-time without
large scale manually-labeled training data. In particular, we
first harness stereo-based unsupervised free-space detection
methods to generate large amount of noisy labels without
human intervention. Although these results are not accurate,
they still provide rich information of the scene that resides
in the stereo images. The proposed framework essentially
transfers the knowledge of ground plane within the depth



estimation to a single RGB image. To combat with the label
noise, we incorporate self-paced learning technique [24] into
CNN training. It can significantly alleviate the influence of
inaccurate supervision. For the choice of network structure,
we modify the original ENet [36] with additional cross-
block shortcuts and expanded dilated convolution [45]. These
simple modifications are proven to effectively recover details
of the segmentation results without resorting to computation-
ally expensive post-processing methods, such as Conditional
Random Field (CRF)[8]. Last but not least, our learning
framework for road segmentation is not only limited to
the network structure we use, but also compatible for all
semantic segmentation models such as Fully Convolution
Network (FCN) [28], DeepLab [8], SegNet [5], etc. This
property makes our framework more appealing since it can
leverage all future advancements in semantic segmentation.

To summarize, our contributions of this paper are as
follows:

1) We design a cross-modality transfer learning frame-
work for road segmentation. Within the framework,
we only need several hundreds of annotated images
to achieve superior performance.

2) We devise a robust CNN learning scheme by applying
self-paced learning technique to image segmentation
problem.

3) We modify the original ENet [36] structure with ad-
ditional shortcuts and expanded dilated convolution to
retain fine-grained details while keeping the computa-
tional efficiency.

4) Our proposed method achieves the best results among
all published methods in the KITTI road segmentation
dataset while running at 15fps.

The remainder of this paper is organized as follows.
Section II reviews the related works. Section III presents
the details of our proposed methods. Section IV shows the
experiment results. Section V concludes the paper.

II. RELATED WORKS

A. Convolutional Neural Networks for Scene Parsing
Deep learning, especially Convolutional Neural Networks

(CNNs) leads the evolution of computer vision in recent
years. In contrast to traditional methods that manually design
different features for different tasks, CNN learns the most
suitable features by multiple layers of non-linear transforma-
tions. As for scene labeling or semantic segmentation task,
FCN[28] is the first work to apply CNN to image segmenta-
tion. FCN employs in-network upsampling to enable pixel-
wise prediction, which makes end-to-end learning and fast
prediction feasible. Following this pioneer work, a series of
CNN based image segmentation works [15], [8], [34], [47]
are proposed. To improve the efficiency, Paszke et al. [36]
proposed an efficient CNN (ENet) for real-time semantic seg-
mentation. They deliberately designed the network structure
as in ResNet [17], and used various variants of convolution
operations to reduce number of parameters. Due to the real-
time requirement, we choose ENet as our baseline model in
this paper.

B. Self-paced Learning

Self-paced learning (SPL) [24] has attracted increasing
attention from researchers in machine learning and computer
vision. SPL is built on the intuition that rather than training
on all samples simultaneously, the algorithm should learn
the data in the order of difficulty. Just like human learning
procedure, SPL learns in a self-controlled pace from easy
samples to hard ones. Effectiveness of SPL to overcome
training data outliers has been shown in many computer
vision tasks, such as multimedia event detection [21], object
detector adaptation [43], long-term tracking [19]. However
the underlying mechanism of SPL remained unknown for
a long time until Meng et al. [32] provided theoretical
justification for SPL: SPL can be treated as optimization of
a robust loss function. There are also several works trying
to employ SPL in deep learning [40], [22]. However, no
prior work has applied SPL to dense prediction problem (e.g.
semantic segmentation) to the best of our knowledge.

C. Free-space Detection

Free space detection [25], [6] aims to estimate the non-
obstacle area (a.k.a drivable space) of a scene. It defines
the area that a robot or an autonomous vehicle could reach
without collision.

By definition, it is nature to use depth estimation to
find the continuous and flat area of a scene since the 3D
information is available. The representative work of free-
space detection from depth is called StixelWorld [4]. They
first used stereo disparity map to build occupancy grids
where each cell represents the probability of a grid is
occupied. Then dynamic programming is used to find the
optimal path that segments the image into free-space and
obstacle area. Many subsequent works[6], [39] incorporated
RGB information to reduce the error of inaccurate disparity
computation. However, such methods still fail in the cases
like dramatic illumination change due to the lack of context
information.

There are also works to apply CNN to solve this task.
Sanberg et al. [38] proposed a CNN based method with self-
supervised learning and online training for free-space detec-
tion. Levi et al. [27] converted the problem to a regression
problem using CNN by finding the split point of free-space
and obstacle for each column of an image. Though they
both share the idea of automatic label generation from depth,
their performances are seriously degraded by the unsatisfied
quality of labels.

D. Road Segmentation

Road segmentation is highly related to free-space detec-
tion except that road segmentation considers the additional
semantic meaning of an area. For example, the grassland
in Fig. 1b is drivable, but according to traffic rule, we
cannot drive on it. Additional semantic constraints make road
segmentation even harder than free-space detection.

Conventional methods [44], [23], [2], [46] used hand-
crafted features to capture geometrical characteristics (e.g.
road edge, vanishing point [23] and texture [46]) of roads



to solve the problem. These methods have limitations in
adapting various road conditions and complex environments.
If the system meets new road patterns, new features and
constraints need to be manually designed.

Not surprisingly, CNN based semantic parsing methods
have been widely used in road segmentation. Mohan [33]
first proposed a deep deconvolution network for this task.
This method first divides an image into several regions, and
then each region is trained with a separate network, which
is both time and memory inefficient. Moreover, this method
requires fixed-size input, and is not trained in an end-to-
end manner. Subsequent works tackled these drawbacks by
fully convolutional networks. Mendes et al. [31] proposed
a network-in-network architecture for fast road detection;
Oliveira et al. [35] proposed an efficient FCN model for
road detection. They adopted VGG [42] as encoder and use
a U-Net architecture[37] to increase the network’s capability
recovering from substantial dimension reduction in encoder.

There are also some other works that utilize existing
methods for weak labels generation. Alvarez et al. [1] first
trained a classifier with manually designed features on a
small labeled training dataset, and then used this classifier
to generate weak labels for CNN training on large unlabeled
data. Laddha et al. [26] proposed a map-supervised approach
to detect road. They used localization sensors and map data
to generate noisy road labels, and adopted K-means to refine
the noisy labels. However, the label noise issue degenerates
the performance of these methods significantly. Moreover,
they both generated the labels in the same modality (RGB
image) of subsequent CNN training, which may lead the
algorithm step in the pitfalls of hard cases in RGB images.
Diversity in information modality is needed to ensure a good
performance.

Above all, the performance of road segmentation has
been skyrocketed with the rapid development of CNN based
image segmentation technique. However, designing a road
segmentation method with both high efficiency and high
performance is still challenging. Moreover, the need of large-
scale labeled data hamper the further improvement of per-
formance. Both these issues call for a deliberately designed
training pipeline and a network structure to incorporate the
prior knowledge of road.

III. METHODS

In this section, we introduce our transfer learning frame-
work for road segmentation. The framework of our proposed
approach is shown in Fig. 2. An unsupervised free-space
detection method first generates the noisy training labels.
Then, our proposed efficient projection CNN is trained on
these noisy labels with self-paced learning. Lastly, the pre-
trained CNN is fine-tuned on a few annotated images for
road segmentation with normal training to adapt the differ-
ence between free-space detection and road segmentation. In
testing phase, the images from single camera are fed to the
CNN to get the final prediction.

A. Coarse Label Generation from Unsupervised Method

Firstly, an off-the-shelf algorithm is used to generate train-
ing labels. Specifically, we adopt Extended StixelWorld [39].
The inputs of this algorithm is a RGB image and a disparity
map, which can be obtained by LiDAR or computed from
stereo images. In our implementation, we use DispNet [30]
to generate the disparity map from a pair of stereo images.

B. Pre-training on Efficient Projection CNN

After label generation, the left eye image is used as
input to train our segmentation CNN. The benefit of pre-
training the CNN with the label generated by stereo based
free-space detection algorithm are in two folds: First, we
transfer the rich structure knowledge of the scene resides
in disparity map to single RGB image. Second, [39] only
relies on local features to generate free space. It can not
utilize the context information either within the same image
or across images. For example, it can hardly distinguish
road and sidewalk. However, if the whole image and stereo-
based machine-generated label are used to train a CNN, the
knowledge within RGB and stereo images are condensed into
the weights of CNN. Moreover, the weights are shared across
different images.

Our proposed network architecture is based on ENet [36].
ENet adopts the residual connection block of ResNet [17] as
the basic block (Fig. 4b) and refers this block as bottleneck
module. Each bottleneck block has a bypass branch and
an main branch with convolution to learn residual. This
bottleneck ensures that layers in early stage can receive
gradient directly from layers in later stage. This structure
facilitates the optimization of ultra deep network, so ResNet
can stack even deeper than 200 layers [18].

The network architecture is presented in Table I. It is
divided into several levels as separated by horizontal lines,
and each level is further divided into blocks. The first three
levels are encoders to condense the semantic information,
while the last three levels are decoders to expand the features
to final prediction. As presented in Fig. 4, there are three
block types: initial, bottleneck, and projection. The initial
block (Fig. 4a) is the same as in ENet. Batch Normalization
[20] and PReLU [16] are placed between convolutions. The
last level of the network is a single 3×3 deconvolution layer
with stride 2. The final output has C feature maps, where C
is the number of object classes.The difference between our
network and original ENet mainly lies in the following two
aspects:

First, we exploit the use of shortcut connections across
different levels to recover fine-grained details. The first two
stages of ENet rapidly downsample the feature maps. Al-
though this scheme accelerates the computation, it loses the
fine-grained details. Therefore it leads to over-smooth results.
As is shown in Fig. 5a, ENet cannot delineate road bound-
aries accurately. A common approach to address such issue
is to use CRF [8]. However, it introduces extra computational
cost, which is undesirable for real-time prediction. Therefore,
we add shortcuts from lower layers to higher layers directly.
This design helps the network to propagate the detailed



Fig. 2. Framework of road segmentation approach with efficient projection network and self-paced learning.

(a) (b) (c) (d) (e)

Fig. 3. Illustration of our framework. (a) Input images (The red line indicates the boundary for road and other regions). (b) Disparity estimation with
DispNet [30]. (c) Unsupervised free-space detection with Extended StixelWorld [39]. (d) Road segmentation learned from free-space with self-paced
learning. (e) Final road segmentation result after fine-tuning on labeled dataset.

features in low level layers to high level layers. We call our
proposed network efficient projection network. As shown in
Fig. 4c, our projection operation is conducted by element-
wise addition of a main branch and a projection shortcut
by 1× 1 convolutions. Projection is only added on encoder
levels (level 1, level 2 and level 3) after bottleneck1.4, 2.10
and 3.10.

Second, since road usually spans over large portion of
the image, it needs larger receptive field to distinguish the
semantic meaning of an area. For example, in order to distin-
guish road and sidewalk, the network even needs the global
layout of the scene in the image. Consequently, we increase
the receptive field by an additional dilation convolution[45].
We add bottleneck2.10 and bottleneck3.10 with dilation 32
along with regular 3 × 3 convolution bottleneck2.9 and
bottleneck3.9 to expand the receptive field. As illustrated in
Fig. 5, these two modification indeed improves the localiza-
tion ability of the network and succeeds in recovering road
boundaries.

Other differences between our proposed network and the
original ENet include: 1) When dimension matching is
needed in bottleneck block, we use 1 × 1 convolution to
match them instead of using zero padding. 2) In original
ENet, the number of filters of the convolution layer between
two 1× 1 convolution in bottleneck block is one quarter of
that in these 1 × 1 convolution layers. This design severely

impairs the results since the number of filters of ENet has
already significantly decreased compared with ResNet. So
we keep the number of filter in these three layers same in
our network.

C. Self-paced Learning

The core idea of SPL is to gradually include samples
from easy to hard in the training process. Then the model
may learn toward the majority of the labels, and tend to
ignore the outliers in the labels. Specifically, SPL reweights
each sample according to its loss value during training.
Formally, for training data {(xi, yi)}ni=1, xi, yi represent the
i-th sample and i-th label, respectively. Let L(yi, g(xi,w))
represent the loss function, in which g(xi,w) is the predic-
tion from the model with weights w. Suppose λ is an age
parameter controlled by training iteration, f(v;λ) is a self-
paced regularizer (SP-regularizer), the main goal of SPL is
to learn sample weights v = [v1, v2, ..., vn]

T with gradually
increasing age parameter. The SPL model is composed of a
weighted loss term and a self-paced regularizer term, denoted
as:

min
v,w

n∑
i=1

(viL(yi, g(xi,w)) + f(vi, λ))

s.t. v ≥ 0

(1)
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Fig. 4. (a)Initial block. (b) Bottleneck block. conv is either a regular(3×3), dilated(3×3), asymmetric(a (5×1) followed by a (1×5)) or deconvolution(3×3).
(c)Projection block. 1× 1 convolution is used to match dimension. Here, x denotes the level. n denotes the last block of the level.

(a)

(b)

Fig. 5. (a) Segmentation result with ENet without project and expanded
receptive field. (b) Segmentation result with our proposed network.

where w is the original model parameter, v is the latent
sample weight, and they are jointly learned to incorporate
the samples from easy to hard. To implement the idea of
self-paced learning, the SP-regularizer should satisfy several
properties as stated in [32]. Due to limited space, we do not
repeat them here. A typical choice of SP-regularizer is called
linear regularizer [21], which is defined as:

f(v;λ) = λ(
1

2
v2 − v). (2)

In our model, the function g(·) is the proposed efficient
projection network, and the loss function L(·) is the last
softmax layer. Since each pixel corresponds to a softmax
loss, an individual sample weights is assigned for each pixel
according to the corresponding loss.

For optimization of the problem, we alterate between v
and w. The closed form solution of v given w can be

calculated as:

v∗(l;λ) =
{ − l

λ + 1, if l < λ
0, if l ≥ λ . (3)

The intuition behind this regularizer is that if the loss value
of a sample is larger than the increasing age parameter, the
sample will not be considered in training. Otherwise, its
weight increases linearly as the loss value decreases. The
age parameter λ is gradually increased during SPL training
process to include more training samples. To optimize w,
we use back-propagation algorithm to train the network.

Fig. 6 exhibits the learning results and sample weights v
for different training epochs. As the age parameter increasing
with the training epoch, more samples are added into train-
ing. SPL effectively removes inaccurate regions in training
labels by decreasing the weights of misleading labels in the
supervision (darker in the figure), and increasing the weights
of true road and obstacle region (brighter in the figure). As
a result, the CNN inclines to learn road structures from free-
space labels.

IV. EXPERIMENT

A. Dataset and Experiment Settings

KITTI [13] is a dataset designed to benchmark vision
tasks for autonomous driving. We evaluate the performance
of our method on KITTI road dataset, which consists of
289 training and 290 testing images. The performance is
evaluated in three different categories of road scenes: single-
lane road with markings (UM), single-lane road without
markings (UU), multi-lane road with markings (UMM) and
urban road which is defined as the average of these three.
Fig. 7 shows examples of our road segmentation results for
the three different categories. The performance is evaluated
in bird view spacem, and the following metrics are used



(a) (b) (c) (d)

Fig. 6. Example of self-paced learning results (the first row) and the assigned sample weights v (the second row, the brighter the higher) with different
training epoch. (a) Input image and generated noisy label. (b) Result and sample weights in the 3rd epoch. (c) Result and sample weights in the 10th
epoch. (d) Result and sample weights in the 30th epoch.

TABLE I. EFFICIENT PROJECTION NETWORK ARCHITECTURE.

Name Type Number of Channels

Initial 16

bottleneck1.0 downsampling 64
4×bottleneck1.x 64
projection1.5 64

bottleneck2.0 downsampling 128
bottleneck2.1 128
bottleneck2.2 dilate 2 128
bottleneck2.3 asymmetric 5 128
bottleneck2.4 dilate 4 128
bottleneck2.5 128
bottleneck2.6 dilate 8 128
bottleneck2.7 asymmetric 5 128
bottleneck2.8 dilate 16 128
bottleneck2.9 128
bottleneck2.10 dilate 32 128
projection2.11 128

Repeat section 2, without bottleneck2.0

bottleneck4.0 upsampling 64
bottleneck4.1 64
bottleneck4.2 64

bottleneck5.0 upsampling 16
bottleneck5.1 16

deconv C

for evaluation: Maximum F1-measurement (MaxF), Average
precision (AP), Precision (PRE), Recall (REC), False pos-
itive rate (FPR), and False negative rate (FNR). We show
these measurements in percentage and we ignore ’%’ symbol
in our experiment section. Results for other methods can be
found on KITTI website. Methods are ranked according to
their MaxF since it fuses other metrics. We also compare
inference time with various methods.

Our implementation is based on MXNet [9] on NVIDIA
TitanX GPU. More details and codes are available at http:
//winsty.net/cmtspl_roadseg.html

B. Implementation Details

We use all 14999 images in KITTI object detection dataset
for unsupervised pre-training. Note that since we don’t use
the object detection labels, it is reasonable to use both
training and testing dataset. After that, we fine-tune the

network on KITTI road dataset (289 training images with
human-annotated labels). We pre-train 60 epochs and fine-
tune 1000 epochs. We use SGD with momentum of 0.9,
weight decay of 0.0002 and a polynomial learning rate
policy: Li = L0(1 − i/n)p, where i is the training iterator,
Li is the learning rate of ith training epoch, L0 = 0.001 is
the initial learning rate, n is the maximum training epochs.
We set p = 0.9 in our experiment. The age parameter λ is
tuned as:

λi = 5× 10−6i+ 0.3 (4)

where i is the training iteration, and λi is the age parameter
in the ith iteration.

We also employ a series of data transformations to aug-
ment data: scaling (randomly scale the image by a factor
between 0.9 to 1.2), mirroring (randomly flip the image
horizontally), color transformation (color jittering in HSV
color space, range [−15, 15] for H, S, V, respectively.) and
random cropping (randomly crop 320×1000 from the scaled
image).

C. Self-paced Learning Results

We firstly evaluate the effectiveness of cross-modality
transfer learning and the self-paced learning scheme. We
compare the results of: 1) pre-training on KITTI object
detection dataset with SPL and fine-tuning on KITTI road
dataset, 2) the same setting with 1) without SPL, and 3) di-
rectly training KITTI road dataset with random initialization.
Table II summerizes the results. Not surprisingly, SPL ranks
first, then followed by the model without SPL and random
initialization. In one hand, cross-modality transfer learning
is able to guide the CNN to capture the rough structure of
the scene. On the other hand, SPL decreases the chances for
CNN to learn from misleading labels. The experiment results
confirm the usefulness of cross-modality transfer learning
and SPL.

TABLE II. COMPARISON OF THE EFFECT OF PRE-TRAINING AND
SPL LEARNING

MaxF AP PRE REC FPR FNR

with SPL 94.40 93.05 93.87 94.93 3.42 5.07

w/o SPL 93.69 92.96 93.74 93.65 3.44 6.35

random init 92.72 92.78 92.76 92.68 3.98 7.32



(a) UM (b) UU (c) UMM

Fig. 7. Our segmentation results on different road categories. Green represents true positives, blue denotes false positives, and red denotes false negatives.

D. Comparison of different network structure

Next, we compare the results of different network struc-
tures within our framework. Note that we don’t use SPL in
this experiment. We test the impact of the projection oper-
ation and additional dilation while keep using convolution
for dimension matching and larger number of filter for 3×3
convolution. As illustrated in Table III, the performance has
been improved vastly with these two designs. The inspiring
results demonstrate that our projection operation improves
the performance in dense prediction task by combining fine-
grained features in low levels and semantic features in high
levels. In addition, the expanded receptive field by additional
dilation convolutions helps to incorporate more context into
prediction.

We also try to replace our efficient projection network with
FCN-8s [28]. Though FCN is a more complex network with
more parameters, its results are much worse than ours. This
again validates the effectiveness of our designed network
structure.

TABLE III. COMPARISON OF RESULTS OF DIFFERENT NETWORK
STRUCTURES

MaxF AP PRE REC FPR FNR

ENet 93.13 93.01 93.15 93.12 3.77 6.88

FCN 90.89 82.32 87.00 95.14 7.83 4.86

Our model 93.69 92.96 93.74 93.65 3.44 6.35

E. Comparison with the state-of-art methods

We compare our method with top ranked methods sub-
mitted to KITTI website. Since most of them do not reveal
the details of their methods, we only compare with those
published methods. Our test results of different categories
are shown in Table IV. Note that UR denotes urban roads,
which is average of UM, UU and UMM. Our method exhibits
significantly better results compared with other state-of-the-
art methods at 15fps.1

1By 15th, Sep, 2016

F. Comparisons of Complexity of Different Methods

Table V compares the prediction time for different meth-
ods. Although these results are directly quoted from KITTI
website, all these methods are run on latest GPU, so we can
still roughly compare them. Our method is at the sweet point
at performance and speed. Moreover, our model only has
2.4M parameters (18.8M in storage), which makes this net-
work easy to deploy into embedded system for autonomous
driving. We believe it will also benifit from more advanced
compression and accleration techniques for deep learning
that been developed in recent years.

V. CONCLUSIONS

In this paper, we study the problem of road segmentation
for autonomous driving. A cross-modality transfer frame-
work has been proposed to reduce human labor for segmen-
tation label annotation. The principle behind the framework
is that we transfer the rich yet inexpensive scene structure
across two different modalities: from stereo images to sin-
gle RGB image. Furthermore, self-paced training has been
incorporated to reduce the influence of inaccurate automatic
generated labels. Then, an efficient projection convolutional
neural network has been further devised to achieve real-
time segmentation with more accurate road boundaries. At
last, our experimental results demonstrate the effectiveness
and efficiency of our approaches. In particular, we rank first
among all published methods in KITTI road segmentation
evaluation.
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