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Abstract

With the surge of deep learning techniques, the field of
person re-identification has witnessed rapid progress in re-
cent years. Deep learning based methods focus on learn-
ing a discriminative feature space where data points are
clustered compactly according to their corresponding iden-
tities. Most existing methods process data points individ-
ually or only involves a fraction of samples while building
a similarity structure. They ignore dense informative con-
nections among samples more or less. The lack of holistic
observation eventually leads to inferior performance. To
relieve the issue, we propose to formulate the whole data
batch as a similarity graph. Inspired by spectral cluster-
ing, a novel module termed Spectral Feature Transforma-
tion is developed to facilitate the optimization of group-
wise similarities. It adds no burden to the inference and
can be applied to various scenarios. As a natural exten-
sion, we further derive a lightweight re-ranking method
named Local Blurring Re-ranking which makes the under-
lying clustering structure around the probe set more com-
pact. Empirical studies on four public benchmarks show
the superiority of the proposed method. Code is available
at https://github.com/LuckyDC/SFT_REID.

1. Introduction

Person re-identification (ReID) is an indispensable com-
ponent in surveillance video analysis. Given the probe, per-
son ReID aims at identifying images of the same person
across multiple non-overlapping camera views. Thanks to
the emergence of deep learning techniques and large scale
datasets [62, 64, 21, 55], the field of person identification
evolves rapidly. Though having achieved much progress,
it remains challenging due to drastic pose variation, occlu-
sion, and background cluttering.

Deep learning based ReID methods focus on exploit-
ing the powerful capability of neural networks to learn dis-
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Figure 1. The illustration of the similarity structure built by differ-
ent methods. Contrastive and triplet loss focus on pair-wise(a) and
triplet-wise(b) relationship, respectively. While our method cap-
ture dense connections between samples by formulating the data
as a graph(c).

criminative feature. When projected to the obtained fea-
ture space, data points are expected to gather into clus-
ters according to their labels. In order to intensify intra-
class compactness and inter-class separability of the fea-
ture, many efforts have been made in recent years. Besides
designing tailor-made neural architectures, a large variety
of loss functions have also been proposed. The two most
prevalent types of loss functions in ReID are classification
loss(e.g. softmax cross entropy loss) [63, 10, 44, 43] and
metric learning based loss(e.g. triplet loss and contrastive
loss) [5, 15, 60]. Classification loss has promising conver-
gence but is vulnerable to overfitting. It processes samples
individually and only builds connections implicitly through
the classifier. Metric learning based loss explicitly opti-
mizes the distances between samples. While the similarity
structure it builds only involves a pair/triplet of data points
and ignores other informative samples. This leads to a large
proportion of trivial pairs/triplets which could overwhelm
the training process and eventually makes the model suffer
from slow convergence. To relieve the issue, many meth-
ods [40, 29, 27] incorporate more samples while building
the similarity structure. Whereas, they are still limited by
the number of samples considered which may impair the
performance.

https://github.com/LuckyDC/SFT_REID


Motivated by aforementioned observations, we propose
to capture more informative structure by taking all instances
in the batch into account. Specifically, the whole data batch
is regarded as a similarity graph in our method. The in-
sight is illustrated intuitively in Figure 1. To encourage the
learning of discriminative feature, we borrow the inspira-
tion from spectral clustering which operates on the similar-
ity graph of the input data. Given the input data, spectral
clustering partitions them into groups. It is expected that
samples from different groups have very low similarities
and those within the same group have high similarities. Un-
der the setup of supervised learning, the ground-truth parti-
tions (i.e. identity label) are also given. In addition, group-
wise similarity derived from the feature can be learned in
the deep learning scheme. Thus, the objective becomes to
optimize group-wise similarities such that the given parti-
tions are optimal in the case. Whereas, it is non-trivial to
optimize group-wise similarities directly. Alternatively, we
perform a feature transformation with the guidance of the
derived transition probabilities. Then, the supervision is im-
posed on the transformed feature. To push the performance
ahead, we further combine the model with an auxiliary clas-
sification branch. The whole process is fully differentiable
and only brings marginal computational cost. Despite its
simplicity, the proposed method improves the performance
significantly over strong baselines.

Furthermore, we adapt the online feature transformation
to the offline post-processing stage. In the properly learned
embedding space, there underlies a clustering structure in
the local neighborhood of each data point. The proposed
local blurring re-ranking acts as a pre-clustering process.
It makes ambient clustering structure more compact which
could diminish ambiguity in retrieval.

In summary, this paper has following contributions:

• To efficiently capture more informative structure, we
form the data in one batch into a similarity graph.
Inspired by spectral clustering, a novel feature trans-
formation is proposed which facilitates the optimiza-
tion of group-wise similarities on the graph. It intro-
duces no extra cost to the inference and can be readily
adapted to other tasks which require embeddings.
• A lightweight re-ranking method is naturally derived.

It makes the underlying clustering structure more com-
pact in the neighborhood of the probe set.
• Extensive experiments validate the effectiveness of our

method. Competitive performances are achieved on all
four public benchmarks.

2. Related Works
Person re-identification has witnessed rapid progress

lately with the power of deep neural networks. Recent ef-
forts on deep learning based person ReID can be roughly

categorized into two directions. One is to customize the
network architecture for person ReID. Besides common
techniques in CNN such as multi-scale feature aggrega-
tion [30] or attention modules [22, 47], tailor-made archi-
tectures [44, 42, 33, 53, 49, 11] for person ReID are also
devised. Sun et al. [44] split the feature map into several
horizontal parts and imposed supervision on them directly.
Suh et al. [42] employed a sub-network to learn body part
feature and fused it with appearance feature via a bilinear-
pooling layer. These methods explicitly consider the struc-
ture of human body to alleviate the impact of occlusion or
inaccurate detections, thus improve the performance.

The other direction concentrates on developing discrim-
inative loss functions. There are two dominant streams in
this direction. One is to introduce the classical metric learn-
ing into deep learning, such as contrastive loss [12] and
triplet loss [34]. The performances of these methods are
highly dependent on the similarity structure built in train-
ing. Several works make improvement by incorporating
more informative samples [40, 29, 27]. Another stream
improves on classification loss. Center loss [57] regular-
izes the distance between data points and their correspond-
ing class center. Large-margin softmax [25] and its vari-
ants [24, 50, 48] enforce various types of margin on the
vanilla softmax cross entropy loss. They all have demon-
strated effectiveness in face recognition and person ReID.

Spectral clustering is a conventional algorithm for data
clustering. It was pioneered by Donath et al. [8] and became
popular in the pattern recognition community since some
landmark works [38, 28, 26, 46]. It is based on the spec-
tral graph theory and converts the data clustering problem
into the graph partition problem. In contrast to K-Means,
spectral clustering makes no assumption on the structure of
the cluster. So it can generalize to more complex scenarios
like intertwined spirals. Some recent works [16, 35, 45, 58]
tried to incorporate spectral clustering with deep learning.
Though spectral clustering has been applied extensively,
combining it with CNN in person re-identification is still
under investigation.

Re-ranking is a post-processing technique to refine the
ranking of retrieval results. In essence, re-ranking methods
aim at enhancing the original similarity metric by the in-
formation of local neighbors. Early works [19, 31] tried
to explore k-reciprocal nearest neighbors for general im-
age retrieval. Recently, Zhong et al. [65] introduced re-
ranking technique into ReID task. They combined the Jac-
card distance of k-reciprocal encodings and the Euclidean
distance of original features in post-processing. Along this
line, Sarfraz et al. [33] aggregated distances between ex-
panded neighbors of image pairs to reinforce the original
pairwise distance. Moreover, to take advantage of the di-
versity within a single feature, Yu et al. [61] further fused
distances between different sub-features.



Graph convolutional networks generalize the vanilla
convolution operator to non-Euclidean data. Due to the
complementarity, it often acts as a feature aggregation com-
ponent over the current CNN framework. GCN was first
proposed by Kipf et al. [20] for semi-supervised classifi-
cation. Currently, it is a rising research direction in com-
puter vision. Yan et al. [59] modeled dynamics of human
body skeletons via graph convolutional networks. Wang et
al. [51, 52] exploited GCN and an equivalent view non-local
feature aggregation to capture the spatial-temporal relations
between convolutional features and object proposals in the
video, respectively. GCN focuses on propagating and trans-
forming information within the graph to generate better fea-
tures. While the proposed SFT module aims at adjusting
the supervision to guide the learning of the feature below it.
The two methods differ in their motivations.

The two most related works to ours are [36, 37]. They
both applied similarity transformation on the graph to
achieve better results. However, there are obvious discrep-
ancies in terms of the definition of the graph. For each im-
age in the probe set, they construct one graph with probe-
to-gallery similarities as nodes and gallery-to-gallery simi-
larities as edges. While in our approach, each node directly
corresponds to the feature of a sample and each edge is de-
fined as the similarity of its endpoints. Consequently, in
each mini-batch, they need to construct several subgraphs,
while we treat the whole mini-batch as one single graph
which is much conceptually simpler and faster.

3. Method

To capture thorough information from the data, we pro-
pose to formulate data points in the training batch as a
graph. In the case, we focus on optimizing group-wise sim-
ilarity on the graph. The inspiration is initially borrowed
from spectral clustering which operates on the similarity
graph of the data.

We first give a brief introduction of spectral clustering
algorithm and its closely related concept graph cut in Sec-
tion 3.1. We then elaborate on the proposed Spectral Fea-
ture Transformation (SFT) in Section 3.2. In Section 3.3,
we extend the proposed feature transformation to the post-
processing stage to further refine the retrieval result.

3.1. Graph Cut and Spectral Clustering

Under the setup of spectral clustering, data X =
{xi}i=1,...,n are represented as an undirected graph.
Wherein, each vertex of the graph corresponds to a data
point in X and each edge is weighted by the similarity be-
tween its endpointswij = sim (xi, xj). For brevity, we take
the 2-cluster problem as an example in the following for-
mulation, and readers can refer to [41] for the multi-cluster
extension.

To obtain the optimal clustering result on a graph, an
intuitive way is to solve a minimum cut problem. For two
disjoint subsets A,B ⊂ X , the cut between them is defined
as

cut(A,B) =
∑

i∈A,j∈B
wij . (1)

However, minimizing vanilla cuts often leads to a trivial
solution where a single vertex is separated from the rest of
the graph. To circumvent the issue, Shi et al. [38] proposed
to normalize each subgraph by its volume:

Ncut(A,B) =
cut(A,B)

vol(A)
+

cut(A,B)

vol(B)
, (2)

where vol(A) =
∑

i∈A,j∈X wij is the total connection from
nodes in A to all nodes in the graph.

3.2. Spectral Feature Transformation

Suppose X ∈ Rn×d is the final embedding of a training
batch. Wherein, n and d denote the number of data points
and the dimension of the embedding vector, respectively.
We adopt the cosine similarity with Gaussian function to
measure the affinities between samples. Formally, each ele-
ment of the affinity matrix W is defined as

wij = exp

(
xTi xj

σ · ‖xi‖2‖xj‖2

)
, (3)

where σ is a hyper-parameter which reflects the decay rate
of the affinity as the cosine similarity decreases. Now, we
can define a similarity graph over all data points in the mini-
batch as G = (X,W ). By normalizing the rows of W to 1,
we can derive the transition probability matrix T :

T = D−1W, (4)

where D is a diagonal matrix whose elements are defined
as di =

∑n
j=1 wij . In practice, the computation of T can

be implemented by applying softmax function with temper-
ature σ on affinity matrix W .

The most intriguing property we can derive from T is the
escaping probability P (A → Ā). It is proportional to the
total transition probability from a subgraph A ⊂ X to an-
other Ā = X−A [26]. In ReID task, a subgraph A denotes
the set of samples belonging to the same identity. So, the
escaping probability is essentially the chance of an identity
getting misclassified. In other words, it measures inverse
group-wise similarities. It is straightforward that a small
P (A → Ā) requires strong intra-cluster connections and
weak inter-cluster connections, which is the desired prop-
erty for spectral clustering. In fact, as proved in [26], the
escaping probability is exactly equivalent to the Ncut met-
ric,

Ncut(A, Ā) = P (A→ Ā) + P (Ā→ A). (5)
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Figure 2. The overall architecture of the proposed model. We adopt the output of the final global average pooling layer as image embedding
for retrieval. Spectral feature transformation is performed on the embeddings of the data batch. Subsequently, a classifier is imposed on
the transformed feature. We also combine the model with an extra classification branch. Parameters are shared between the two classifiers.

From this perspective, Ncut metric can be readily derived
from the transition probability matrix T .

Given the data, traditional spectral clustering aims at
seeking optimal partitions w.r.t the Ncut metric. While in
the fully supervised setting, the ground-truth partitionsA, Ā
are known. Moreover, the feature which can derive the tran-
sition probability matrix T is learned adaptively in the deep
learning paradigm. In this case, the objective becomes to
optimize T so that the Ncut metric of the given partitions is
minimal. By doing this, we essentially minimize the prob-
ability of misclassifying a data sample from group A into
group Ā. Unfortunately, directly optimizing the transition
probability is ill-conditioned. The hard constraint overlooks
the potential connection between samples which degrades
the performance. Alternatively, we utilize T to guide the
transformation of feature X and apply supervision on the
transformed feature. Specifically,

X ′ = TX, (6)

where X ′ denotes the feature which has undergone the
transformation. Subsequently, the supervision is imposed
on the transformed feature using a classifier. In the case, im-
plicit connections are considered and the necessity of hard
constraint is also bypassed tactfully. The scheme can also
be understood from the viewpoint of the spring model. As
vertexes are optimized, springs (weighted by T ) change ac-
cordingly.

To fully liberate the power of spectral clustering, it is
necessary to satisfy the assumption that the input data obey
the underlying cluster structure. In other words, there must
be sufficient images for each identity in the training batch.
Thus, we adopt the sampling strategy proposed by Her-
mans et al. [15] which is ubiquitous in deep metric learn-
ing. Specifically, a mini-batch in training contains P iden-
tities and each identity has K images. To further push the

performance ahead, we combine an extra vanilla classifica-
tion branch as in many existing methods. The two branches
share the same classifier as supervision. Only then can we
guarantee that the distribution of features are aligned before
and after spectral feature transformation. Notably, the pro-
posed spectral feature transformation is just applied in the
training process and would be discarded during inference.
The overall architecture of the proposed neural networks is
displayed in Figure 2.

3.3. Local Blurring Re-ranking

In this section, we further extend the proposed spectral
feature transformation to the offline post-processing stage.
Given a probe image, images in the gallery are ranked ac-
cording to the cosine similarity with it. Then, we collect
features of top-n entries and perform spectral feature trans-
formation on them. Finally, the top-n rank list is recom-
puted based on the similarity derived from transformed fea-
tures. Since n is much smaller than the size of the gallery
and the features are extracted in advance, the refinement
process introduces negligible overhead.

The extension is based on the assumption that there un-
derlies a cluster structure in the neighborhood of the probe
images. This is exactly the case when the feature extractor
has been properly trained on the training data. As expressed
in the mathematical formulation of spectral feature transfor-
mation, the embedding of each data point will be blurred by
the others according to the similarities between them. Each
data point will be moved towards the high-density area (i.e.
cluster center) which has more short paths to it. This pro-
cess is equivalent to conduct a clustering operation on local
neighbors of the probe image [2]. Therefore, it can make
the cluster structure more compact and relieve the ambigu-
ous issue in retrieval. In addition, as the evaluation protocol
implies, the top ranking list has a larger impact on the fi-
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Figure 3. A retrieval example on DukeMTMC-reID. (a) is the re-
sult of the model with classification branch only. (b) is generated
by the proposed model (i.e. SFT + classification). (c) is the refined
result based on (b) using local blurring re-ranking.

nal performance. So we only refine the top-n ranking list to
balance efficiency and performance gain. Compared with
k-reciprocal re-ranking which is operated on the whole test
set, the proposed re-ranking is much more efficient. Exper-
iments show that this simple operation leads to prominent
improvement.

3.4. Discussion

In the sequel, we will analyze some appealing proper-
ties of our method which contribute to the improvement and
connections to other techniques.
Relax assumptions and ease optimization Instead of
applying direct constraints on pairwise similarities, our
method relaxes the learning objective to optimize such sim-
ilarities after the group-wise transformation of SFT. SFT
moves the features towards the corresponding cluster cen-
ter, thus it has enhanced the discrimination of features. This
stabilizes the training process and finally leads to better per-
formance.
Training diversity According to the definition of SFT, all
samples in the mini-batch participate in the operation. The
transformed features of the same sample differ because the
composition of the data batch changes while training. This
desired property introduces massive diversity which effec-
tively alleviates the risk of over-fitting.
Connection to diffusion process Both diffusion pro-
cess [18, 1, 9] and our SFT are based on Markov process.
Meanwhile, they are different in motivation and implemen-
tation. In terms of motivation, diffusion process aims to
obtain a more faithful similarity, while the objective of
our method is to learn discriminative features. As for im-
plementation, diffusion process is performed on the whole
dataset, while our SFT process data in the form of mini-
batch. They are applied to affinity matrices and features,
respectively.

(a) Without SFT (b) With SFT

Figure 4. Visualization of the affinity matrix. We randomly sample
6 identities from DukeMTMC-reID and take all images belonging
to them for visualization. For clarification, samples are arranged
according to their identities. It can be seen that the proposed spec-
tral feature transformation significantly suppresses the similarities
among different identities.

4. Experiments

4.1. Datasets

To validate the effectiveness of the proposed method,
we conduct extensive experiments on four popular
person re-identification benchmarks, i.e., Market-
1501 [62], DukeMTMC-reID [64, 32], CUHK03 [21]
and MSMT17 [55]. In terms of CUHK03, we use manual
annotations and follow the protocol proposed in [65].

Given the probe images, gallery images are sorted ac-
cording to the cosine similarity with it. On the basis of
generated ranking list, Cumulated Matching Characteristics
(CMC) at rank-1, rank-5 and mean average precision (mAP)
are calculated to evaluate the performance of the model.

4.2. Implementation Details

We adopt ResNet-50 [14] pre-trained on ImageNet [7] as
our backbone network. We use the output of global average
pooling layer of ResNet as the embedding vector. In order
to preserve more fine-grained information, the downsam-
pling of the last stage of ResNet is discarded which leads
to a total stride of 16. The hyper-parameter σ of SFT layer
is set to 0.02 for MSMT17 and 0.1 for the remaining three
datasets. As for the classifier, we follow a bottleneck de-
sign which has been proven effective by many works [44].
Specifically, a fully-connected layer is applied to reduce the
dimension of the feature from 2048 to 512 which is fol-
lowed by Batch Normalization [17] and PReLU [13]. The
output is then l2-normalized and fed into the loss function.
To push the performance ahead, we adopt AM-Softmax [48]
loss for the final classification. In all experiments, the mar-
gin and the scaling parameter of AM-Softmax are set to 0.3
and 15, respectively. In terms of data pre-processing, input
images are resized into 256× 128. Random horizontal flip-
ping and random erasing [66] are utilized as data augmen-
tation. In training, each mini-batch contains 16 persons and



each person has 8 images which results in a batch size of
128. Stochastic Gradient Descent (SGD) with the momen-
tum of 0.9 is applied for optimization. We train 140 epochs
in total. The learning rate warms up from 0.001 to 0.1 lin-
early in the first 20 epochs. It is decayed to 0.01 and 0.001
at 80th and 100th epoch, respectively. As for local blurring
re-ranking, we refine the top-50 ranking list for each probe
image on Market-1501, DukeMTMC-reID and CUHK03.
While for MSMT17, top-150 ranking list is refined, since
it has a much larger gallery than the other datasets. Our
implementation is based on MXNet [4] framework.

4.3. Ablation Study

Effectiveness of Spectral Feature Transformation. As
shown in the first two rows of Table 1, consistent improve-
ments are achieved on all four benchmarks. The improve-
ment on Market-1501 is relatively marginal. There are
many persons with few images on Market-1501, e.g. 161
persons have no more than 8 images. In such condition,
the balanced sampling would re-sample frequently from the
same images, which may limit the improvement. For conve-
nience, we employ the same training setting for all datasets
which makes the baseline overfit on CUHK03. While our
approach is immune to overfitting as mentioned before.
This results in significant improvement on CUHK03. In
addition, we visualize the affinity matrix between images
of 6 different identities with and without SFT module. It
can be easily observed in Figure 4 that the affinity between
different identities is obviously suppressed. Thus, the fea-
tures extracted by our method are more discriminative for
person ReID. It it noteworthy that the proposed SFT intro-
duces negligible training overhead and no extra parameters.
In our setting, it only leads to 0.0336 GFLOPs computa-
tion, while the overhead of the backbone network is 4.08
GFLOPs. The relative cost is less than 1%.
Effectiveness of Local Blurring Re-ranking. We also
evaluate our method with and without the proposed local
blurring re-ranking. As reported in rows 4-5 of Table 1,
local blurring re-ranking could further improve the perfor-
mance significantly. To further clarify its effectiveness, we
make a comparison with the k-reciprocal encoding [65]
method. As shown in the last two rows in Table 1, the pro-
posed post-processing surpasses k-reciprocal encoding on
all benchmarks in terms of Rank-1 accuracy which is the
most considerable metric in the real scenario. As for mAP,
our post-processing method demonstrates advantages only
on the CUHK03 dataset. Note that k-reciprocal encoding
takes massive resource to search for k-reciprocal nearest-
neighbors of all items in the gallery. Suppose the gallery
size is N , the computational complexity of k-reciprocal re-
ranking is O(N2 logN), while that of LBR is O(N logN).
The gap of efficiency becomes significant when the gallery
gets larger. This is also validated by the elapsed time on

the three largest dataset reported in Table 3. Taking all
these components together, the performance of our method
improves dramatically. A qualitative illustration of the re-
trieval is represented in Figure 3. It is clear that the rank-
ing result improves when components are added sequen-
tially. And Local blurring re-ranking effectively corrects
false matches.
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Figure 5. The influence of bandwidth σ.

Combination with vanilla classification branch. As
shown in row 2 and row 4 in Table 1, the combination
with classification branch leads to prominent improvement.
We also implement a variant supervised by triplet hard
loss [15] and classification loss as the counterpart. Our
method shows consistent superiority over it. We find the
participation of triplet loss even degrades the performance
on MSMT17 slightly. We further investigate the necessity
to share parameters between the two branches. As shown
in Table 2, shared version outperforms unshared version
significantly. It is reasonable since independent classifiers
may optimize model to different directions which impairs
the stability while training.

4.4. Parameter Analysis

Influence of hyper-parameter σ. The proper selection of
affinity function is crucial for the success of spectral clus-
tering. So, it is necessary to investigate the impact of σ on
the learned features. To this end, we vary σ to five different
values and evaluate the performance of the model trained
under these settings. As visualized in Figure 5, our method
is relatively robust to the value of λ.
Influence of the number of images per identity K. We
investigate the trend of the performance when varying K.
Given that Market-1501 and CUHK03 are relatively small



Variants Market-1501 DukeMTMC CUHK03 MSMT17
mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1

Classification branch only (baseline) 77.3 91.2 63.9 82.0 40.6 44.9 37.3 66.7
SFT branch only 79.6 91.6 70.4 85.4 60.2 66.3 44.7 71.9
Triplet + Classification 80.0 92.2 68.2 83.7 27.6 59.0 60.2 65.6
SFT + Classification 82.7 93.4 73.2 86.9 62.4 68.2 47.6 73.6
SFT + Classification + LBR 87.5 94.1 79.6 90.0 71.7 74.3 58.3 79.0
SFT + Classification + k-reciprocal 90.6 93.5 83.3 88.3 68.7 71.7 60.8 76.1

Table 1. Ablation studies on Market-1501, DukeMTMC-reID, CUHK03(labeled) and MSMT17 dataset. LBR denotes the proposed local
blurring re-ranking method.

Dataset unshared shared
mAP R-1 mAP R-1

Market-1501 79.0 91.8 82.7 93.4
DukeMTMC 66.9 83.3 73.2 86.9

CUHK03 43.1 47.1 62.4 68.2
MSMT17 35.3 63.7 47.6 73.6

Table 2. Ablation study on shared/unshared classifier.

method Market DukeMTMC MSMT17
k-reciprocal 209 s 152 s 11009 s
LBR (Ours) 41 s 24 s 423 s

Table 3. The elapsed time of re-ranking methods.

which can not satisfy the need of largerK. We only conduct
experiments on MSMT17 and DukeMTMC-reID. Figure 6
shows that our approach can benefit from larger K, while
the performance of vanilla baseline model even degrades
when K increases. This phenomenon again validates our
hypothesis that group-wise training is more advantageous
with larger mini-batch. Because it can utilize holistic infor-
mation of the whole batch for the training of a sample.
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Figure 6. The trend of performance whileK(#images per identity)
varies.

4.5. Comparison with State-of-the-Art Methods

The proposed method is compared with state-of-the-art
methods in this section. KR and LBR in the tables below
denote k-reciprocal re-ranking and the proposed local blur-
ring re-ranking, respectively.
Results on Market-1501 dataset. As shown in Table 4,
our method achieves the best rank-1 accuracy among com-

petitors, while mAP is slightly lower than SGGNN [37]. It
must be highlighted that both SGGNN [37] and GSRW [36]
undergo customized post-processing. After the refinement
of LBR, our method outperforms them significantly. We
further perform a comparison on the dataset with 500k dis-
tractors. The results are summarized in Table 5. As reported
in the table, our method is robust to distractors. When dis-
turbed by 100k distractors, the mAP/rank-1 accuracy of our
method only decreases by 4.9%/2.5%. Note that the rank-
1 accuracy is still over 90% in this case. While for the
other four competitors, the degradations are much larger
than ours. The performance gaps are even more significant
when increasing the distractor size. Note that our method
can still maintain over 90% rank-1 accuracy when disturbed
by 100k distractors. This strongly demonstrates the robust-
ness of our method.

Methods Reference Market-1501
mAP R-1 R-5

GLAD [56] ACMMM17 73.9 89.9 -
MLFN [3] CVPR18 74.3 90.0 -
HA-CNN [22] CVPR18 75.7 91.2 -
DuATM [39] CVPR18 76.6 91.4 97.1
Part-aligned [42] ECCV18 79.6 91.7 96.9
PCB [44] ECCV18 77.4 92.3 97.2
GSRW [36] CVPR18 82.5 92.7 96.9
SGGNN [37] ECCV18 82.8 92.3 96.1
Mancs [47] ECCV18 82.3 93.1 -
Proposed - 82.7 93.4 97.4
Proposed(+ KR) - 90.6 93.5 96.6
Proposed(+ LBR) - 87.5 94.1 97.5

Table 4. Comparison with state-of-the-art methods on the Market-
1501 dataset.

Results on DukeMTMC-reID dataset. The results on
DukeMTMC-reID dataset are presented in Table 6. It can
be seen that our method outperforms other state-of-the-arts
significantly. Specifically, our approach gains 1.4% and 2%
improvement over Mancs [47] in terms of mAP and rank-
1 accuracy, respectively. After the refinement of LBR, our
method even promotes rank-1 accuracy up to 90.0%.
Results on CUHK03 dataset. We only conduct experi-



Methods
Distractor Size

0 100k 200k 500k
mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1

Zheng et al. [63] 59.9 79.5 52.3↓7.6 73.8↓5.7 49.1↓10.8 71.5↓8.0 45.2↓14.7 68.3↓11.2
APR [23] 62.8 84.0 56.5↓6.3 79.9↓4.1 53.6↓ 9.2 78.2↓5.8 49.8↓13.0 75.4↓ 8.6

TriNet [15] 69.1 84.9 61.9↓7.2 79.7↓5.2 58.7↓10.4 77.9↓7.0 53.6↓15.5 74.7↓10.2
Part-aligned [42] 79.6 91.7 74.2↓5.4 88.3↓3.4 71.5↓ 8.1 86.6↓5.1 67.2↓12.4 84.1↓ 7.6

Proposed 82.7 93.4 77.8↓4.9 90.9↓2.5 75.5↓ 7.2 89.3↓4.1 71.9↓10.8 87.1↓ 6.3

Table 5. Comparison with state-of-the-art methods on the Market-1501+500k dataset.

Methods Reference DukeMTMC
mAP R-1 R-5

PSE [33] CVPR18 62.0 79.8 89.7
HA-CNN [22] CVPR18 63.8 80.5 -
MLFN [3] CVPR18 62.8 81.0 -
DuATM [39] CVPR18 64.6 81.8 90.2
GSRW [36] CVPR18 66.4 80.7 88.5
SGGNN [37] ECCV18 68.2 81.1 88.4
PCB+RPP [44] ECCV18 69.2 83.3 -
Part-aligned [42] ECCV18 69.3 84.4 92.2
Mancs [47] ECCV18 71.8 84.9 -
Proposed - 73.2 86.9 93.9
Proposed(+ KR) - 83.3 88.3 92.0
Proposed(+ LBR) - 79.6 90.0 94.0

Table 6. Comparison with state-of-the-art methods on the
DukeMTMC-reID dataset.

Methods Reference CUHK03
mAP R-1 R-5

SVDNet [43] ICCV17 37.8 40.9 -
DPFL [6] ICCV17 40.5 43.0 -
HA-CNN [22] CVPR18 41.0 44.4 -
MLFN [3] CVPR18 49.2 54.7 -
DaRe [54] CVPR18 61.6 66.1 -
Proposed - 62.4 68.2 84.4
Proposed(+ KR) - 68.7 71.7 85.5
Proposed(+ LBR) - 71.7 74.3 85.6

Table 7. Comparison with state-of-the-art methods on the
CUHK03 dataset. We adhere to newly proposed evaluation pro-
tocol [65] and report results on manually labeled version of
CUHK03.

ments on the manually labeled subset of CUHK03 under the
new protocol [65]. The results are reported in Table 7. It can
be observed that our method achieves the best performance
among compared methods. It outperforms DaRe [54] by
0.8% and 2.1% in terms of mAP and rank-1 accuracy, re-
spectively.
Results on MSMT17 dataset. Since MSMT17 is released
very recently, there is no other published work evaluated
on it to our best knowledge. So we only compare our
method with baselines reported by authors [55]. As shown

Methods Reference MSMT17
mAP R-1 R-5

GoogleNet [55] CVPR18 23.0 47.6 65.0
PDC [55] CVPR18 29.7 58.0 73.6
GLAD [55] CVPR18 34.0 61.4 76.8
Proposed - 47.6 73.6 85.6
Proposed(+ KR) - 60.8 76.1 84.5
Proposed(+ LBR) - 58.3 79.0 85.8

Table 8. Comparison with state-of-the-art methods on the
MSMT17 dataset.

in Table 8, our method outperforms these baselines dramat-
ically. Specifically, it exceeds GLAD by 13.6% and 12.2%
in terms of mAP and rank-1 accuracy, respectively. This
verifies the scalability and the robustness of our method
when applied in large scale scenarios. To clarify the su-
periority of our method, we remind readers that GLAD [56]
performs pretty well on Market-1501 as recorded in Table 4.

5. Conclusion
Inspired by spectral clustering, we propose a novel fea-

ture transformation module to facilitate the learning of dis-
criminative features which only involves several basic ma-
trix operations. In contrast to most existing methods, our
approach formulates the whole data batch as a similarity
graph to capture potential relational structure. The em-
phasis is laid on optimizing group-wise similarities in our
method. Furthermore, we extend the online operation to
the post-processing stage. It conducts pre-clustering in
the local neighborhood of the probe set which mitigates
the ambiguity when retrieving. Though its simplicity, the
proposed method brings prominent improvement over the
strong baseline. Ablation studies on four benchmarks prove
the effectiveness and scalability of our method.
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