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Abstract

Video objection detection (VID) has been a rising re-
search direction in recent years. A central issue of VID
is the appearance degradation of video frames caused by
fast motion. This problem is essentially ill-posed for a
single frame. Therefore, aggregating features from other
frames becomes a natural choice. Existing methods rely
heavily on optical flow or recurrent neural networks for
feature aggregation. However, these methods emphasize
more on the temporally nearby frames. In this work, we ar-
gue that aggregating features in the full-sequence level will
lead to more discriminative and robust features for video
object detection. To achieve this goal, we devise a novel Se-
quence Level Semantics Aggregation (SELSA) module. We
further demonstrate the close relationship between the pro-
posed method and the classic spectral clustering method,
providing a novel view for understanding the VID prob-
lem. We test the proposed method on the ImageNet VID and
the EPIC KITCHENS dataset and achieve new state-of-the-
art results. Our method does not need complicated post-
processing methods such as Seq-NMS or Tubelet rescoring,
which keeps the pipeline simple and clean.

1. Introduction

Recent years have witnessed fast progress in object de-
tection using deep convolutional networks. Renewed detec-
tion paradigms [8, 25, 11], strong backbone [12, 34] and
large scale datasets [18, 16] jointly push forward the limit
of object detection.

Video Object Detection (VID) has now emerged as a new
challenge beyond object detection in still images. Thanks to
the fast progress in still image object detection, detectors’
performance on slow-moving objects in video object detec-
tion has somewhat saturated [36]. The main challenge now
lies in the scenario where objects or cameras are under fast

Figure 1. Challenges in video object detection. Motion blur, cam-
era defocus and pose variation.

motion.
Fast motion brings up image degradation unseen in the

still image setting like motion blur, camera defocus and
large pose variation as shown in Figure 1. Still image detec-
tors often fail in these cases. On the other hand, a video pro-
vides far richer visual information than a still image. When
the appearance of an object deteriorates in a frame, it is
natural to include information from the video (e.g. nearby
frames) to mitigate this degradation. The second and third
columns in Figure 1 show various difficult sequences in
VID. Though in these hard cases, there are still some frames
more salient than the others. A good video object detec-
tor should be able to identify the salient views to refine its
beliefs on those degraded views if they are (semantically)
similar, either to support its beliefs or deny them. Note that
useful information is not necessarily from temporal nearby
frames, any objects share high similarity with the object of
interest in any frames (even within the same frame) could
contribute.

Post-processing methods try to incorporate video-level
information by designing sophisticated rule set for linking
bounding boxes generated by still image detectors. These



two-stage methods are not jointly optimized and may lead
to sub-optimal results. Instead, end-to-end feature aggre-
gation utilizes motion information estimated from optical
flow [37] or instance tracking [29] for object feature cali-
bration. Feature calibration methods heavily rely on accu-
rate motion estimation, which is somewhat contradictory.
In the circumstance of fast motion, the appearance of ob-
jects degrades drastically. Thus the results of optical flow
are usually unsatisfactory in such cases, which makes it less
helpful for VID task.

To lift this limitation in a principled way, we need to
take a deeper look at the video itself. Existing works gen-
erally take video as sequential frames, and thus mainly uti-
lize the temporal information to enhance the performance
of a detector. For example, Flow Guided Feature Aggre-
gation (FGFA) [36] uses at most 21 frames during training
and testing, which is less than 5% of average video length.
Instead of taking a consecutive viewpoint, we propose to
treat video as a bag of unordered frames and try to learn an
invariant representation of each class on the full sequence
level. This reinterprets video object detection from a se-
quential detection task to a multi-shot detection task.

In the multi-shot view, a video consists of clusters of ob-
jects, with each cluster containing hundreds even thousands
of shots. The appearance degradation of an object is the
manifestation of large intra-class feature variance. Thus re-
ducing the feature variance lies in the core of addressing ap-
pearance changes. As mentioned before, temporal feature
aggregation is a well-established way for feature variance
reduction. However, it fails to utilize the rich information
beyond a fixed time window.

We take a further step by clustering and enhancing fea-
tures in the entire sequence level. In this work, we present
Sequence Level Semantics Aggregation (SELSA) method.
We introduce SELSA module which is inspired by spec-
tral clustering. Features of Region of Interests (ROI) are
extracted from frames sampled from the whole video, and
then go through our clustering module and transformation
module. The enhanced features are handed to the detec-
tion head to get final detection results. Our method is thor-
oughly tested on the large scale ImageNet VID and EPIC
KITCHEN datasets. We also design ablation experiments
to demonstrate the effectiveness of proposed methods. We
achieve 82.7 mAP with Faster-RCNN detector and ResNet-
101 backbone and 84.3 mAP with ResNeXt-101 backbone,
improving the state-of-the-art results by a large margin. Ad-
ditional experiments on EPIC KITCHENS [4] dataset show
that our method generalize to more complex scenes.

In summary, our contributions are three folds:

1. We first treat video detection as a sequence level multi-
shot detection problem and then introduce a global
clustering viewpoint of VID task for the first time.

2. To incorporate such view into current deep object
detection pipeline, we introduce a simple but effec-
tive Sequence Level Semantics Aggregation (SELSA)
module to fully utilize video information.

3. We test our proposed method on the large scale Ima-
geNet VID and EPIC KITCHEN datasets and demon-
strate significant improvement over previous methods.

2. Related Work
In this section, we briefly review several works that are

closely related to our method.

2.1. Object Detection in Still Images

Thanks to the success of deep neural networks, state-of-
the-art detection systems [25, 3] are based on deep convo-
lution neural networks (CNNs). The typical two-stage de-
tector R-CNN [9] first extracts regional features from back-
bone networks based on deep CNNs, and then classifies and
refines the corresponding bounding boxes. Fast R-CNN [8]
proposed RoIPooling operation to speed up the regional fea-
ture extraction process. Traditionally, region proposals are
generated through selective search [28]. The Regional Pro-
posal Network (RPN) was proposed in Faster R-CNN [25]
to generate region proposals through deep CNNs, using
backbone networks shared with Fast R-CNN. R-FCN [3] in-
troduced position-sensitive RoIPooling operation, improv-
ing the detection efficiency by sharing the computation of
regional features.

On the other hand, one-stage object detector directly
predicts the bounding box of interest based on the ex-
tracted feature map from CNN. Without the extra stage,
one-stage detector is usually faster than the two-stage coun-
terpart. Representative works include YOLO [22] and its
variants [23, 24], SSD [19] and its variants [7, 17]. Never-
theless, one-stage detector can hardly extend to more com-
plicated tasks such as key point detection and instance seg-
mentation. Similarly in our work, it can hardly be extended
to extract proposal-level object semantic features. Thus we
choose Faster R-CNN as our basic still image detector.

Recently, high-level relations among objects in object
detection has been studied in [13, 30]. These works model
the appearance and geometry relations among object pro-
posals within a single image. This enables joint reasoning
of objects and improves the accuracy. It could also be used
as a duplicate removal step instead of NMS since the geom-
etry relations is embedded. Similarly, our work also cap-
tures relations among objects. However, we especially cap-
ture the relation measured by semantic similarity (objects
of the same class across the video) instead of high-level in-
teraction between objects (e.g person v.s glove in [13]). We
use these similarities to guide our feature aggregation and
alleviate problems introduced by videos (fast motion).



2.2. Object Detection in Videos

For object detection in videos, the main challenge lies in
how to utilize the rich information of videos (e.g. temporal
continuity) to improve the accuracy as well as the speed
upon still image detectors.

Several previous works devised various post-processing
techniques applied to the results of still image detectors
by leveraging temporal information: Kang et al. [15, 14]
proposed to suppress false positive detections via multi-
context suppression (MCS) and propagate predicted bound-
ing boxes across frames using the motion calculated by op-
tical flow. Then a temporal convolution neural network is
trained to rescore the tubelets generated using visual track-
ing. Feichtenhofer et al. [6] performed single-frame object
detection and object movements regression across frames
(tracking) in a multi-task fashion. Then it links the detec-
tions across frames to object tubelets using the predicted
movements, and re-weights detection scores in tubelets.
Han et al. [10] proposed Seq-NMS to form high score
linkages using bounding box IoU across frames and then
rescore the boxes associated with each linkage to the av-
erage or maximum scores of the linkage. These methods
perform box-level post-processing upon still image detec-
tions, which could be sub-optimal since they are not opti-
mized jointly. In contrast, our method manages to leverage
video-level information at proposal-level by end-to-end op-
timization without post-processing steps.

Another line of work [14] focuses on utilizing optical
flow to extract motion information to facilitate object detec-
tion. However, such pre-computed optical flow is neither
efficient nor task related. Deep Feature Flow (DFF) [37]
is the first work that adopts in-network fine-tuned optical
flow computation. It utilizes the optical flow generated by
FlowNet [5] to propagate and align the features of selected
keyframes to nearby non-keyframes, thus reducing redun-
dant calculation and speeding up the system. FGFA [36]
is built on DFF [37]. However, its objective is to improve
the accuracy by aligning and aggregating features from
keyframes using optical flow. Based on DFF and FGFA,
MANet [29] adds an instance-level feature calibration and
aggregation module besides the pixel-level one in FGFA,
and then it combines these two levels through a motion pat-
tern reasoning module. Furthermore, [35] and [1] design
more advanced feature propagation and keyframe selection
mechanisms to improve the accuracy as well as the speed.

Using optical flow to calibrate features across frames
could be error-prone since object location, appearance and
pose could change dramatically, where optical flow estima-
tion becomes unreliable. Unlike these methods, our method
does not intend to align features across frames by temporal
information. We aggregate features on the proposal level,
which makes our method more robust and superior.

Tripathi et al. [27] trained a recurrent neural network to

refine its initial detection results. Lu et al. [20] used as-
sociation LSTM to address the object association between
consecutive frames. STMN [33] used a Spatial-Temporal
Memory module as the recurrent operation to pass the infor-
mation through a video. Unlike [33], our method does not
need to pass information using memory modules in tem-
poral order. We form clusters and aggregate features in a
multi-shot view to capture the rich information of videos in-
stead. Also, our clustering and feature aggregation are per-
formed on instance-level features, where redundant pixel-
level calculation is unnecessary. Moreover, it focuses more
on subjects of interest.

3. Method
In this section, we first describe the motivation of our Se-

quence Level Semantics Aggregation (SELSA) method in
Sec. 3.1. We then elaborate the details of our SELSA mod-
ule in Sec. 3.2. We further interpret our method from the
clustering view in Sec. 3.3. Finally, we discuss the relation
between our method and existing works in Sec.3.4.

3.1. Motivation

Feature aggregation is an effective way to mitigate the
appearance degradation in video detection. The vital part
of this method is to choose proper features for aggregation.
Previous methods [29, 36] generally utilize features from a
short temporal window. But appearance deterioration could
span a wide time window and thus makes temporal-based
methods less effective. Moreover, the frames may be highly
redundant in a short time window and consequently weaken
the advantage of feature aggregation. To address this prob-
lem, we propose to aggregate feature from the semantic
neighborhood, which is not susceptible to the appearance
degradation lasting in time.

3.2. Sequence Level Semantics Aggregation

The ideal way for feature aggregation is to aggregate
within the ground truth tracklet. But the golden associa-
tion for proposals across frames is not available during test
phase. Inspired by the ReID-based association which is
popular in multi-object tracking system [32], we propose
to link proposals across space-time with their semantic sim-
ilarities. This semantic feature based association approach
is well known for its robustness to appearance change.

Semantic Guidance For each frame f , let Xf =
{xf

1 ,x
f
2 , · · · } be the proposals generated by the RPN net-

work from Faster-RCNN. For a specific pair of proposals
(xk

i ,x
l
j), we measure the semantic similarity between them

with the generalized cosine similarity:

wkl
ij = φ(xk

i )Tψ(xl
j), (1)



Figure 2. The overall architecture of the proposed model. We first extract proposals in different frames from the video, then the semantic
similarities of proposals are computed across frames. At last, we aggregate the features from other proposals based on these similarities to
obtain a more discriminative and robust features for object detection.

where φ(·) and ψ(·) are some general transformation
functions. Higher similarity indicates a higher chance of
proposals being in the same category.

Feature Aggregation After defining the similarity be-
tween proposals, the semantic similarity now serves as
guidence for the reference proposal to aggregate features
from other proposals. By aggregating across multiple pro-
posals, the new proposal feature contains much richer in-
formation and should be robust against appearance varia-
tion like pose change, motion blur, and object deformation.
Moreover, since the similarities are built on the proposal
level, they are more robust compared with the optical flow
which is computed on each position in feature maps.

In order to preserve the magnitude of the features af-
ter aggregation, we normalize the similarities with softmax
function across all proposals. Formally, suppose that we are
aggregating from randomly picked F frames in the video
with N proposals produced in each frame, the aggregated
feature for reference proposal is defined as:

x̄k
i =

∑
l∈Ω

N∑
j=1

wkl
ijx

l
j , (2)

where Ω is the set of frame indexes randomly selected for
the aggregation. The SELSA module is fully differentiable
and can be optimized end-to-end with standard SGD. After
the aggregation, the enhanced proposal features are further
fed into the detection header network for classification and
bounding box regression. Figure 2 shows how the proposed
SELSA module work.

3.3. A Spectral Clustering Viewpoint

Besides the simple and intuitive formulation of our
method, we further reveal its close connection with the clas-

sic spectral clustering algorithm. This sheds light on how
SELSA work from an intra-class variance reduction view-
point.

With proposals X as nodes and similarity W as edges,
we can define a semantic similarity graph G = (X,W) on
the proposals. From a probabilistic viewpoint, the random
walk on graph G is controlled by the stochastic matrix T
which is obtained by normalizing each row in W to sum
1. Tij describes the transition probability from proposal i
to proposal j during a random walk. Proposals belong to
the same class should form a subgraph A ⊂ X. For fea-
ture aggregation, we are especially interested in minimiz-
ing the risk of incorrectly aggregating the features of a pro-
posal which does not belong to the reference class. This risk
can be measured by the transition probability PĀA from the
subgraph Ā = X−A to the subgraph A.

The transition probability between subgraphs is formally
defined as,

PĀA =

∑
i∈Ā,j∈A πiTij∑

i∈Ā πi
, (3)

where πi =
∑

k Wjk/
∑

j,k Wjk denotes the stationary
distribution of the graph. πi represents the connection
strength between a proposal and the rest proposals in a
graph.

As proved in [21], the transition probability is equivalent
to the normalized minimum cut,

NCut(A, Ā) = PAĀ + PĀA. (4)

From the traditional spectral clustering view, the stochas-
tic matrix T is fixed, and the transition probability is min-
imized by finding the optimal partition A, Ā. However,
from the supervised deep learning view, the stochastic ma-
trix T derived from proposal features is the variable to op-
timize, and the optimal partition A, Ā is given. The opti-
mization of T is further propagated to the proposal features



and backbone network for discriminative feature learning.
Furthermore, [21] gives the desired form of T, a block-
wise diagonal matrix w.r.t A, Ā, which is exactly the de-
sired guide for proposal feature aggregation.

3.4. Connection to Graph Convolution Network

Recently, Wang et al. [31] have applied GCN for video
classification task. They built a space-time graph with a
similar affinity measurement to us. In their work, they took
the edges of a graph as a general relation in space-time
and mainly focus on modeling the high order interaction
of objects in a video. However, in our work, we design the
SELSA module to refine the features of a reference proposal
by the relationship between them, which leads to a different
motivation and optimization objective.

4. Experiments on ImageNet VID
In this section, we first introduce the datasets and evalu-

ation metrics used for VID in Sec. 4.1, then followed by the
implementation details of our method in Sec. 4.2. We next
justify the design choice of our SELSA module in Sec. 4.3
by ablation studies. We also investigate the effects of exist-
ing post-processing techniques on our method. Finally, we
compare our method with other state-of-the-art methods.

4.1. Dataset and Evaluation Setup

We train our model with a mixture of ImageNet VID
and DET datasets with the split provided in FGFA [36].
We evaluate our proposed method on ImageNet VID
dataset [26]. We report the mAP@IoU=0.5 and motion-
specific mAP on the validation set.

4.2. Implementation Details

Feature Network We use ResNet-101 [12] as the backbone
network for ablation studies. ResNeXt-101-32× 4d [34] is
also used for the final results. The total stride of conv5 block
is changed from 32 to 16 with dilated convolutions.
Detection Network RPN is applied on the output of conv4.
Anchors of 3 scales and 3 aspect ratios are used. Then Fast
R-CNN is applied on the output of conv5. We apply two
fully connected (FC) layers upon the RoI pooled features
followed by classification and bounding box regression.
SELSA Module We insert two SELSA modules into our
network. Each one is inserted after one fully-connected
layer in Faster R-CNN (FC→ SELSA→ FC→ SELSA).
The general transformation functions in Eq. 1 are instanti-
ated as one fully-connected layer.
Training and Testing Details The backbone networks are
initialized with ImageNet pre-trained weights. A total of
220k iterations of SGD training is performed with a to-
tal batch size of 4 on 4 GPUs. The initial learning rate
is 2.5 × 10−4 and is divided by 10 at the 110k and the

Component (a) (b) (c)

Semantics Aggregation X X
Sequence-level Info X

mAP (%) 73.62 75.26↑1.64 80.25↑6.63

mAP (%) (slow) 82.12 83.59↑1.47 86.91↑4.79

mAP (%) (medium) 70.96 72.88↑1.92 78.94↑7.98

mAP (%) (fast) 51.53 51.43↓0.10 61.38↑9.85

Table 1. Detection results on the ImageNet VID validation set.
For sequence-level methods, 21 frames are used when testing. No
post-processing techniques are used. The absolute gains compared
with the baseline are shown in the subscript.

165k iterations. For training, one training frame is sampled
along with two random frames from the same video (iden-
tical frames for the DET dataset). For inference, K frames
from the same video are sampled along with the inference
frame. In both training and inference, the images are resized
to a shorter side of 600 pixels.

4.3. Ablation study

In this subsection, we study the impact of each design
choice and parameter settings.

Effectiveness of SELSA Table 1 compares our proposed
methods with the single-frame baseline.

Column (a) shows the results of our single-frame base-
line. It uses ResNet-101 as the backbone and achieves a
reasonable mAP of 73.62 as in [36].

Column (b) performs semantics aggregation (SA) within
a single frame, a degenerated variant of SELSA. More
specifically, only proposals obtained from the same frame
are considered as possible semantic neighbors for aggre-
gation. This leads to a gain of 1.64 mAP compared with
the baseline. When multiple objects with the same seman-
tics or multiple proposals corresponding to the same ob-
ject appear in the same frame, the semantically aggregated
proposal features are hence enhanced with contextual in-
formation like in [13, 2], thus leading to the performance
improvement. Note that for objects under fast motion, the
mAP (fast) receives no improvement over baseline. This in-
dicates that appearance degradation induced by fast motion
could not be remedied by the contextual or object interac-
tion information.

Column (c) is the proposed SELSA method. It utilizes
the SELSA module to enhance proposal features by sam-
pling semantic neighbors from the full video sequence. It
gives an mAP of 80.25, a large 6.63 mAP improvement
compared with the baseline method. Note that it enhances
the motion-specific performance in fast motion to 61.38
mAP, which is a huge improvement of 9.95 mAP compared
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Figure 3. Ablation analyses of different test settings. (a) The effect of different number of frames on sequential test performance. (b) The
effect of different sampling stride on sequential test performance. (c) The effect of different number of frames on shuffled test performance.

with the baseline. Compared with column (b) and (c), it
is easy to see that our method directly harvests high-quality
features from aggregating sequence level features other than
high order interaction information on the graph, as previ-
ously stated in Sec. 3.4.

Sampling Strategies for Feature Aggregation Frame
sampling strategy matters for video detection. As previous
works [33, 36] pointed out, using more frames in feature ag-
gregation during testing yields better results. Besides, [33]
samples frames with a uniform stride during testing to im-
prove the performance.

We examine the influence of the number of frames used
and sampling strides when testing our method. Specifically,
by using a sampling stride of S, one frame in every S frames
is used for testing instead of consecutive frames.

First, we use sampling stride one and vary the number of
frames used in aggregation. As seen in Figure 3(a), with
more frames used for testing, the performance increases
consistently. For example, using 21 frames for aggregation
instead of 5 contributes a 1.04 mAP improvement.

We then fix the number of frames for aggregation to 21
and examine the impact of sampling stride. Figure 3(b)
shows the performance with different sample strides. In-
creasing the sampling stride from 1 to 10 further improves
the performance from 77.02 to 79.36 mAP (a gain of 2.34
mAP). Notice that the sampling stride demonstrates a larger
influence on the performance than the number of testing
frames in general, which coincides with our assumption that
our sequence level method could benefit more from sam-
ple diversity. Other feature aggregation methods which use
optical flow or RNN may not benefit from the larger stride
since it violates the temporal continuity assumption of these
methods.

Semantics Aggregation in Sequence Level As discussed
earlier, good features for aggregation in VID should be
more diverse in terms of appearance and poses. This ob-

servation motivates the use of semantic neighbors instead
of temporal neighbors. Thus, taking a step further, we sam-
ple semantic neighbors uniformly from the full video se-
quence regardless of the temporal orders (shuffled test set-
ting). This is feasible since our method does not rely on any
temporal information (e.g. optical flow), and also no fea-
ture alignment operation across frames is performed. Our
method is exempt from possible inaccurate predictions of
temporal information (e.g. optical flow estimation [36],
bounding box shifting prediction [6]) and feature alignment
process [37, 29], which is important when the motion is
large. In fact, performance drops have been shown in opti-
cal flow based method [29] as the number of frames increase
when exceeding a certain threshold (12 frames in [29]). Our
method, on the contrary, shows its power of performing fea-
ture aggregation in the whole video sequence level in Fig-
ure 3(c). As we have seen, using only 5 frames in shuffled
test already achieves the same level of performance as 21
frames in strided testing. And using 21 frames along with
shuffled testing gives an mAP of 80.25. This introduces an
improvement of 0.89 mAP against to the strong result of
79.36 mAP where a sampling stride of 10 and in total 21
frames are used. This gain comes from sampling more di-
verse features in semantic neighbors rather than temporal
neighbors, which further shows the effectiveness of SELSA
for capturing the full sequence level information for feature
aggregation. This is the default test setting in the following
experiments.

Data augmentation Existing VID datasets usually suffer
from lacking of semantic diversity. Frames in a video are
high similar to each other and thus lead to potential over-
fitting. Thus we adopt data augmentation to alleviate this
problem. Photometric distortion, random expand and ran-
dom crop as in [19] are used besides the original random
flipping operation. This gives us an improvement of 2.44
mAP, leading to 82.69 mAP when using ResNet-101 back-
bone.



Backbone ResNet-101 ResNeXt-101

Seq-NMS X X
mAP (%) 82.69 82.48 ↓0.21 84.30 83.73↓0.57

Table 2. The effects of post-processing on our method. The abso-
lute gains compared with the method without Seq-NMS are shown
in the subscript.

4.4. Video-level post-processing techniques

One advantage of our method is that it does not rely on
post-processing methods (e.g Seq-NMS) to incorporate the
full-sequence level information. Nearly all the state-of-the-
art video detection systems [36, 29, 6, 1, 33] adopted post-
processing methods which gives huge gains in performance.
To illustrate that our method has already captured the full-
sequence level information, we further apply the Seq-NMS
post-processing upon our method. Table 2 shows the results
of how Seq-NMS affects our methods when using different
backbone networks. As easily seen, adding Seq-NMS only
has a minor impact on the results. In particular, adding Seq-
NMS to ResNet-101/ResNext-101 backbone network yields
0.21/0.57 mAP drop.

Referring to Table 3, post processing methods have
introduced large performance improvement upon existing
state-of-the-art methods: 2.1 mAP for FGFA [36] and 2.2
mAP for MANet [29] with Seq-NMS and 4 mAP for D
(& T loss) [6] with tubelet rescore. In contrast, almost
no gain from Seq-NMS upon our method with ResNet-
101 as backbone network shows that our method has
already largely captured the full-video level information
through our SELSA module without any post-processing
techniques. Moreover, different from post-processing meth-
ods like Seq-NMS which involves two separate stages, our
method could be trained end-to-end with sequence level
information. As the backbone feature network becomes
stronger, our method could even better utilize such se-
quence level information, thus shows a better result than
that with Seq-NMS, in which the separate post-processing
steps might lead to sub-optimal results.

4.5. Comparison with the state-of-the-art methods

Table 3 summarizes the performance of our methods and
other state-of-the-art methods on the ImageNet VID valida-
tion set. Our method achieves the best performance among
various testing settings.

With no video-level post-processing techniques, com-
pared with FGFA [36] (76.3 mAP) and MANet [29] (78.1
mAP) which are both built on flow-based feature aggrega-
tion, our method is remarkably better (80.25 mAP), outper-
forming these two methods by 3.95 and 2.15 mAP, respec-
tively. It also outperforms D (& T loss) [6] by a large margin
of 4.45 mAP.

Methods Backbone mAP (%)

FGFA [36]

ResNet-101

76.3
D (& T loss) [6] 75.8
MANet [29] 78.1
Ours 80.25

FGFA* [36]

ResNet-101

78.4
MANet* [29] 80.3
ST-Lattice* [1] 79.6
D&T* [6] 79.8
STMN*+ [33] 80.5
Ours* 80.54
Ours4 82.69

D&T* [6] ResNeXt-101 81.6
D&T* [6] Inception-v4 82.1
Ours ResNeXt-101 83.11
Ours4 ResNeXt-101 84.30

Table 3. Performance comparison with state-of-the-art systems on
the ImageNet VID validation set. * indicates use of video-level
post-processing methods (e.g Seq-NMS, tubelet rescoring). + in-
dicates use of model emsembling. 4 indicates using data augmen-
tation.

The middle part of Table 3 shows the comparison with
methods that utilize sequence-level post-processing tech-
niques. FGFA*, MANet* and STMN*+ [33] use Seq-NMS,
while D&T* [6], ST-Lattice* [1] utilize tubelet rescoring.
Our method, by using Seq-NMS as the post-processing
method, achieves 80.54 mAP, which is slightly better than
the previous state-of-the-art method STMN*+.

Furthermore, by plugging in the stornger ResNeXt-101,
our method achieves performance of 83.11 mAP without
any post-processing techniques (e.g Seq-NMS), which sur-
passes the D&T with the same backbone and tubulet rescor-
ing by a large margin (1.15 mAP). Our method benefits
from the stronger representation power introduced by better
backbone networks. When equipped with training data aug-
mentation, our methods show a significant gain of 2.44/1.19
mAP for ResNet-101/ResNeXt-101. This indicates SELSA
can benefit from the diversity of proposal features during
aggregation. These results reveal the potential of our pro-
posed method.

5. Additional Experiments on Epic Kitchen
ImageNet VID dataset falls short in the density and di-

versity of objects. Here we evaluate SELSA on the EPIC
KITCHENS dataset [4].

5.1. Dataset and Evaluation Setup

EPIC KITCHENS [4] is a large scale egocentric dataset,
capturing daily activities happened in the kitchens. In EPIC
KITCHENS dataset, each frame contains avg/max 1.7/9 ob-



Figure 4. Visual results of our method on EPIC KITCHENS.

jects, which is far more complex and challenging. The
video object detection task consists of 32 different kitchens
with 454,255 object bounding boxes spanning 290 classes.
272 video sequences captured in 28 kitchens are used for
training. 106 sequences collected in the same 28 kitchens
(S1) and 54 sequences collected in other 4 unseen kitchens
(S2) are used for evaluation. Videos are annotated in 1s in-
terval.

5.2. Implementation Details

Mostly, we adopt the same network setting as on Ima-
geNet VID dataset. No data augmentation except random
horizontal flip is used. A total of 600k iterations of SGD
training is performed on 4 GPUs. The initial learning rate
is 2.5 × 10−4 and is divided by 10 at the 300k iterations.
For both training and inference, we sample frames within a
±10s window for the SELSA module.

5.3. Results and Analysis

S1
Methods mAP@.05 mAP@.5 mAP@.75
EPIC [4] 45.99 34.18 8.49
Faster R-CNN 53.12 36.57 9.97
Ours 54.67 37.97 9.81

S2
Methods mAP@.05 mAP@.5 mAP@.75
EPIC [4] 44.95 32.01 7.87
Faster R-CNN 48.91 31.86 7.36
Ours 50.25 34.80 8.10

Table 4. Performance comparison on EPIC KITCHENS test set.
S1 and S2 indicate Seen and Unseen splits.

Here we present some preliminary results on the EPIC
KITCHENS dataset. As shown in Table 4, SELSA im-
proves over Faster R-CNN baseline by 1.4/2.94 mAP for
Seen/Unseen splits. Although the training scheme and the

hyper parameter selection are far from optimal, our method
still achieves promising results. This shows that SELSA is
applicable to more complex video detection tasks. Figure 4
shows some results of our method.

6. Conclusion
In this work, we have proposed a novel view of VID

problem by taking the full-sequence level feature aggre-
gation. Instead of using methods such as optical flow or
RNN, we propose a simple yet effective SELSA module
for aggregating semantic features across frames. Since the
aggregation is conducted on the proposal level rather than
feature map or even pixel level, our method is more ro-
bust to motion blur and large pose variation. Furthermore,
we have derived the connection between our method and
the classic spectral clustering method, providing a novel
clustering view of our method. Extensive ablation analyses
demonstrate the effectiveness of the proposed SELSA mod-
ule. When compared with previous methods, our method
achieves superior performance without sophisticated post-
processing methods.
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