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Abstract

Matrix factorization (MF) is a popular collabora-
tive filtering approach for recommender systems
due to its simplicity and effectiveness. Existing
MF methods either assume that all latent features
are uncorrelated or assume that all are correlated.
To address the important issue of what structure
should be imposed on the features, we investigate
the covariance matrix of the latent features learned
from real data. Based on the findings, we propose
an MF model with a sparse covariance prior which
favors a sparse yet non-diagonal covariance ma-
trix. Not only can this reflect the semantics more
faithfully, but imposing sparsity can also have a
side effect of preventing overfitting. Starting from
a probabilistic generative model with a sparse co-
variance prior, we formulate the model inference
problem as a maximum a posteriori (MAP) estima-
tion problem. The optimization procedure makes
use of stochastic gradient descent and majorization-
minimization. For empirical validation, we con-
duct experiments using the MovieLens and Netflix
datasets to compare the proposed method with two
strong baselines which use different priors. Experi-
mental results show that our sparse covariance prior
can lead to performance improvement.

1 Introduction

Nowadays, recommender systems complement search en-
gines for information filtering on the Internet. They provide
personalized recommendation for items such as products or
services by taking into consideration such sources of infor-
mation as characteristics of the items and preferences of sim-
ilar users. As two well-known examples, Amazon and Netflix
use recommender systems to recommend to their users books
and movies, respectively. For this approach to work effec-
tively for personalized advertising which leads to commercial
benefit, it is essential that user preference can be predicted as
accurately as possible. This explains why research in recom-
mender systems has drawn so much interest from both the
academic and commercial worlds.

While recommender systems can use either the content-
based or collaborative filtering (CF) approach (or a hybrid ap-

proach incorporating the two), the CF approach is considered
particularly promising in this era of the social web (or called
Web 2.0) in which social relations are often exploited exten-
sively for a variety of applications. Unlike content-based fil-
tering which defines user or item similarity based on content-
based features extracted from user profiles or item descrip-
tions, the CF approach predicts user preference by analyzing
the previous rating data of many users (hence the qualifier
‘collaborative”).

Memory-based CF methods [Breese et al., 1998; Linden
et al., 2003] directly compute user or item similarity using
the rating data. These methods have a longer history and
have been used by many commercial systems. On the other
hand, model-based CF methods make use of machine learn-
ing and data mining models to explore patterns in the rating
data. They include the clustering model [Xue et al., 2005],
aspect model [Hofmann, 2004], latent factor model [Canny,
2002], restricted Boltzmann machine [Salakhutdinov et al.,
2007], etc. Over the past few years, extensive empirical stud-
ies conducted on large-scale datasets show that model-based
CF methods generally have higher accuracy than memory-
based methods [T6scher et al., 2009].

The most popular and successful model-based CF methods
are based on low-rank matrix factorization (MF). The ratio-
nale behind the MF approach is that the observed rating data
can be explained holistically by a small number of latent fac-
tors for both users and items, which, for instance, may be
related to user groups and item topics. Given an incomplete
and highly sparse rating matrix representing the observed rat-
ing data, a typical MF method factorizes the matrix into two
low-rank matrices, one for latent user features and the other
for latent item features. Multiplying the two matrices thus al-
lows us to complete the original incomplete matrix by filling
in the missing entries.

Among these MF methods, probabilistic matrix factoriza-
tion (PMF) [Salakhutdinov and Mnih, 2008b] is arguably the
most representative one due to its high efficiency and accu-
racy. Many other MF methods are variants of PMF. For exam-
ple, [Hu et al., 2008] utilized the rated-or-not indicator for im-
plicit feedback to improve the results; [Koren, 2008] unified
the latent factor MF model with the neighborhood model un-
der the same framework; and [Rendle and Schmidt-Thieme,
2008] generalized the standard inner product operation for
user features and item features to various kernel functions.
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Figure 1: The left panel is the feature covariance matrix
learned with 10 latent features. The right panel shows the
corresponding correlation matrix.

0.024 -0.003 CXIH]

Recently, incorporating social network information into MF
models has emerged as a hot research direction [Ma et al.,
2008; 2009; 2011].

Since the rating matrix contains many missing entries, MF
methods usually impose an /5 penalty on both the latent user
features and latent item features to avoid overfitting. How-
ever, restricting all features to the same regularization level
limits the flexibility of the model. One variant [Lakshmi-
narayanan et al., 2011] uses a more general diagonal covari-
ance matrix whose diagonal entries do not have to be the same
to give different regularization levels to different features, if
we assume that the user and item features are generated from
multivariate normal distributions. Nevertheless, it still as-
sumes that the features are uncorrelated. An even more flexi-
ble variant uses a full covariance matrix, as in Bayesian prob-
abilistic matrix factorization (BPMF) [Salakhutdinov and
Mnih, 2008a]. Although BPMF gives good results, its high
computational requirement, due to the use of sampling-based
inference techniques, makes it challenging to be applied to
very large datasets.

An open question is whether there is indeed the need for
a full covariance matrix. To answer this question, let us first
take a look at the covariance matrix for the user and item fea-
tures learned by PMF. Figure 1 shows the covariance matrix
and correlation matrix for a movie recommendation dataset
(ML-10M with 80% training data). Not only are the diagonal
entries in the covariance matrix significantly positive, some
non-diagonal entries also differ from O significantly although
such entries are sparse. Note that the latent features are gen-
erally found to be semantically meaningful. For example, the
latent features may correspond to such topics as biography,
comedy, history, and romance. If two features, e.g., those cor-
responding to biography and history, are highly correlated,
we expect that the corresponding entries in the (symmetric)
covariance matrix will also be significantly non-zero. Nev-
ertheless, most other pairs of features are uncorrelated or at
most weakly correlated. This explains why the majority of
the non-diagonal entries are close to 0. Similar observations
have also been noted in some other datasets. This finding in-
spires us to propose later in this paper a sparse covariance
prior which favors a sparse yet non-diagonal covariance ma-
trix for MF models.

Besides its role in reflecting the semantics more properly,
we anticipate that imposing sparsity on the covariance matrix

also has a side effect of preventing overfitting. When there ex-
ist outliers in the very sparse rating matrix, two otherwise un-
correlated features may exhibit high correlation incorrectly.
Imposing sparsity on the covariance matrix will likely help to
alleviate this problem.

Based on the inspiration above, we propose a probabilistic
generative MF model with a novel sparse covariance prior.
The same sparse covariance prior is imposed on both the
user and item feature vectors. For model inference, we take
the maximum a posteriori (MAP) approach for its efficiency
and scalability. Our model is compared empirically with two
baseline MF methods on some large datasets.

2 Brief Review of PMF

Since our model builds on PMF [Salakhutdinov and Mnih,
2008b], let us first give a quick review of the model formula-
tion and learning algorithm of PMF.

For the sake of presentation, we assume that the recom-
mender system is for movie recommendation. The same
model may also be used for recommendation of other items.
Let there be M movies and N users. The rating of movie j by
user ¢ is denoted by R;;. Like many other MF methods, PMF
uses two latent feature matrices U € RP*N and V € RP*M |
with column vectors U; and V; corresponding to the latent
feature vectors of user ¢ and movie j, respectively. It is as-
sumed that the observed ratings are governed by a normal
distribution to give the likelihood as follows:

N M
[TTT v

i=1j=1

p(R|U,V,0%) = Ri; | ULV, 0?)]7, (D

where Z;; is an indicator variable introduced to indicate
whether R;; is observed, and N (X | p,0?) means that X
satisfies a normal distribution with mean 4 and variance o2
(the same notation is also used for the multivariate normal
distribution with mean vector y and covariance matrix ).
Zero-mean spherical normal distributions are imposed as pri-
ors on the column vectors of U and V' independently:

H N,

U|UU |OUUI)

(2)
p(V | o?) :H (V,, | 0,6%1),

where I is an identity matrix and o and 0% are variance
parameters. Using a MAP estimation approach for model in-
ference, PMF solves a log-posterior maximization problem
which is equivalent to the following minimization problem:

N M
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3)
where Ay = 0%/0% and Ay = 02 /0. are regularization pa-
rameters. The graphical model of PMF is shown in plate no-
tation in the left panel of Figure 2. To solve the optimization
problem in Eq. (3) efficiently, PMF uses stochastic gradient

descent to update U and V iteratively.
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Figure 2: Graphical models in plate notation for PMF (left
panel) and SCMF (right panel).

3 Sparse Covariance Matrix Factorization

We are now ready to present our MF model. We first present
it as a probabilistic generative model with a sparse covari-
ance prior. For this reason, we refer to it as sparse covari-
ance matrix factorization (SCMF). As in PMF, model infer-
ence in SCMF is formulated as a MAP estimation problem
which corresponds to an equivalent minimization problem.
We then present an extension of the basic model as well as its
complexity analysis.

3.1 Probabilistic Model

The likelihood term of SCMF is exactly the same as that of
PMF as given in Eq. (1). The main difference lies in the
prior distributions of the latent user and item feature vectors.
Specifically, the priors of the feature vectors U, and V,, are
zero-mean multivariate normal distributions with a full co-
variance matrix:

N
p(U %) =[N, |0,%)

. @)
p(V %) =[NV, 10,%).

Unlike PMF, using a full covariance matrix allows the fea-
tures to be correlated. Having the same covariance matrix X
for both U and V in Eq. (4) provides a bridge to connect the
two feature matrices.

As discussed above, it is desirable to impose sparsity on
the non-diagonal entries of the covariance matrix both for re-
flecting the underlying semantics properly and for preventing
overfitting. To achieve this, we impose a Laplace prior on
every element of X:

_f TLic; £(345 | A), if ¥is a p.d. matrix;

p(E[A) = { 0, ! otherwise,

&)
where ) is a parameter that controls the degree of sparsity,
p.d. stands for positive definite, which is a property required
for all covariance matrices,' and £ is the Laplace distribution
defined as

A
L(Zij | A) = 5 exp(=A[Z41), (©6)

! Although covariance matrices may be positive semi-definite
(p-s.d.), we impose the stricter p.d. requirement here because the
probability density will be undefined for p.s.d. covariance matrices.
Nevertheless, the p.d. requirement is easy to satisfy because the la-
tent dimensionality is typically low.

where |a| denotes the absolute value of the scalar a. The gen-
erative model of SCMF is shown in the right panel of Figure 2
to allow us to reveal the similarities and differences between
it and PMF.

To understand how model inference is done, we first take
a look at the joint posterior distribution of the latent vari-
ables and parameters U, V, ¥ given the hyperparameters § =
(o, \):

p(U,V,E | R,0) o< p(U,V,5, R | 0)

p(RIU,V,0®)p(U | 2)p(V | Z)p(Z | A)
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M
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A
< TT 5 exp(-AIZ4).
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subject to the requirement that the p.d. property is satisfied.
Maximizing the (log-)posterior in Eq. (7) is equivalent to
the following minimization problem:
min f(U, V. | R,0)
UV,s

1 N M
= ﬁZZZU(RH -
i=1 j=1
ZU ur) + (= 1ZVVT)

A
+ §||P ® X1,

Ul'v;)? +

N+M
—; log det(X)

+1t(
—1r
2

®)
where ¥ should be a p.d. matrix, det(-) denotes the determi-
nant of a matrix, tr(-) denotes the trace of a matrix, P is a
matrix with zeros in the diagonal entries and ones in the non-
diagonal entries to prevent the shrinking of diagonal entries
in ¥, and ® denotes element-wise multiplication.

3.2 Optimization Problem
To solve the optimization problem in Eq. (8), we now present

a stochastic gradient descent algorithm which alternates the
update of U, V and X.

Optimizing with respect to U and V'
To optimize with respect to U while keeping V' and ¥ fixed,
the problem in Eq. (8) becomes

N M
min f(U | R,V,%,0) = 2222” i — ULV;)?
=1 j=1
+ tr( ZUUT)

©))



For each observed R;;, the gradient with respect to U; is

0 1 _

ag- = —E(RU ~Ul'V;)V; +271U;. (10)
Similarly, the gradient with respect to V; is

0 1

3{2 :—E(Rij—UiTVj)Uﬁz—lvj. a1

With these gradients, we can use stochastic gradient descent
to update U; and V iteratively.
Optimizing with respect to >
To optimize with respect to ¥ while keeping U and V fixed,
the problem in Eq. (8) becomes

min f(Z| R,U,V,0) = logdet(X) + tr(X719)
A Pex 12
+ m” ® X1,

where

N M
1 T T
S_M+N<§ UpUy + V;,Vp> (13)

p=1 p=1

is the sample covariance matrix for the column vectors of U
and V. We note that the p.d. property of X is preserved since
the log-determinant term acts as a barrier function [Boyd and
Vandenberghe, 2004].

While it appears challenging to solve the optimization
problem in Eq. (12) since the objective function is both non-
convex and non-smooth, it is in fact well structured because
tr(71S) + a||P ® X||; is convex with respect to ¥ while
log det(X) is concave. Problems of this type have been
widely studied and can be solved using the majorization-
minimization (MM) approach [Hunter and Li, 2005].

Theorem 1. The objective function value of Eq. (12) is non-
increasing under the following update rule:

a
"M+ N
where « is a step size and T is an element-wise
soft-thresholding  operator defined by T;{X,Y} =
max(0, | X,;| — Yi;). The objective function value remains

unchanged under the update rule if and only if ¥ is at a
stationary point.

Sei1 eT{tha(Egl—E;lsEt_l) P}, (14)

Theorem 1 guarantees the convergence of updating via
Eq. (14). In what follows, we will give a detailed proof of
Theorem 1. We start by defining an auxiliary function in a
way similar to that in [Seung and Lee, 2001].

Definition 1. g(z | ') is an auxiliary function for f(z) if the
following conditions are satisfied:

gl |2) = f(x), g(z]z)=f(x). (15)

Lemma 2. [f g(z | z:) is an auxiliary function, then f(x) is
non-increasing under the update rule

Tpp1 = argn&ing(z | ). (16)

Proof. f(z141) < g(xe1 | 21) < glay | @) = flae). O

Therefore, the equality f(x:+1) = f(x;) holds only when
x4 is a local minimum of g(x | x;). By iteratively updating
via Eq. (14), we can reach a local minimum of Eq. (12). We
will show in the following that Eq. (14) decreases the value
of the auxiliary function of Eq. (12).

Lemma 3. The following is an auxiliary function of Eq. (12):
9(Zi11 | Bp) = logdet(Sy) + tr((Ze) " (Ze1 — X))

+tr(Z4S) + |P® X1

amn

M+N‘

Proof. 1t is trivial to prove directly from the definition that
g(x | ) = f(z). To prove that g(z | z¢) > f(x) with
Eq. (17) and Eq. (12), we note that

log det () + tr((X) ' (Seq1 — B¢)) > logdet(Sp41).
(18)
This is true since logdet(X;41) is concave with respect to
341 and log det(Et)thr((Et)’l (Be41 fEt)) is the tangent
of log det(X;1) at the point 3;. O

Lemma 4. The update rule in Eq. (14) can guarantee a non-
increasing value for the auxiliary function in Eq. (17).

Proof. Eq. (17) consists of a differentiable convex compo-
nent and a non-differentiable component with an ¢; penalty.
Thus, we can employ a generalized gradient descent algo-
rithm [Beck and Teboulle, 20091, which is a natural extension
of gradient descent to non-differentiable objective functions.
The objective function in Eq. (17) is then changed to

. 1 -1 -1 N
Zzargmén{ %HQ_Zt+1 +a(X; _Et+152t+1)HF
A

JrM—i—N

1P @ QL }.

19)
Solving Eq. (19) is equivalent to updating with Eq. (14). [

Proof of Theorem 1. Since Eq. (17) is an auxiliary func-
tion, f(X) is non-increasing, according to Lemma 2, when
the function value of Eq. (17) decreases. It follows from
Lemma 4 that Eq. (14) minimizes the auxiliary function. This
completes the proof.

3.3 Incorporating User Bias and Item Bias

Previous study [Koren, 2008] showed that incorporating user
bias and item bias terms can lead to further improvement be-
cause it can allow for the intrinsic difference between users
and the intrinsic difference between items to be represented.
Here we present an extension of our basic model to include
such terms.

Specifically, the likelihood in Eq. (1) is modified to

N M
Zi]
p(RIUV,0)=]][]IN@Ri; | UV; + 0 +bY,0%)] 77,
i=1j=1
(20)
where b, the i'" element in a vector b € RV X1, represents
the bias for user ¢, and, similarly, b;-’ is the bias for item j.



The bias vectors b* and bV also follow a zero-mean normal
distribution, namely,

N
p(t* | oi) = [N @} [ 0,07)

=1

y @D
p(” | o) =TIV | 0,07).

i=1

Given the probability distribution, the optimization procedure
for the extended model can be obtained easily by extending
from that in Section 3.2.

3.4 Discussion and Analysis

Positive definite property

The covariance matrix Y, initialized to the identity matrix 7,
remains symmetric and p.d. throughout the optimization pro-
cedure. For the symmetric property, it is easy to see that every
update via Eq. (14) does not change this property. For the p.d.
property > > 0, it suffices to ensure that 3 > &/ for some
0 > 0. Not only can this enhance numerical stability but it
can also avoid penalizing some features excessively. Every
time when X is updated, its eigenvalues are checked. In case
the condition 3 = 41 is violated as a result of the update,
those (possibly negative) eigenvalues smaller than § will be
rounded up to J. This corresponds to projecting the solution
to the convex set C = {¥ | £ > I} in order to preserve the

p.d. property.

Convergence

Our optimization procedure involves three subproblems in
each iteration corresponding to optimization with respect to
U, V and ¥. Because the subproblems for U and V are
convex, convergence to the optimal solutions is guaranteed.
From Theorem 1, the subproblem for ¥, though not con-
vex, is guaranteed to decrease the objective function value
in each iteration. Given that the objective function in Eq. (8)
is bounded below, it always converges to a local minimum.

Complexity analysis

Algorithm 1 summarizes the optimization procedure for
SCMEF, where 3 denotes the step size parameter for the gradi-
ent descent update of U and V.

The algorithm has a time complexity of O((C + M +
N)D?) for each epoch, where C' is the number of observed
ratings. The complexity is linear to the numbers of users,
items, and ratings, but quadratic to the latent feature dimen-
sionality. However, in practice D is very small with D < M
and D < N and hence the algorithm scales linearly with the
data size. This gives the algorithm potential to be applied to
very large datasets. How to select D is a commonly encoun-
tered problem for MF-based methods. Usually it has positive
correlation with the sample size and desired accuracy and has
negative correlation with computational efficiency.

The actual performance of our method compared to PMF
depends on the batch size for updating 3. In practice, the
time requirement of our method is about 1.2-1.5 times that of
the baseline PMF method.

Algorithm 1 Optimization procedure for SCMF
1: input: rating matrix R; hyperparameters «, 3, 0;

2: repeat
3:  for each observed R;; do
4 update U; viaU; = U; — B%;
5 update V; via V z\/}—ﬁg—‘fj;
6: update b;' and b}’;
7:  end for
8: update X via Eq. (14) until convergence;
9: until validation error stops decreasing;
10: return U and V.
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Figure 3: Correlation matrices derived from the covariance
matrices learned from the ML-1M (left panel) and ML-10M
(right panel) datasets.

4 Experiments

In this section, we will shift our focus to the empirical as-
pect of the paper. We first conduct an empirical analysis of
the covariance sparsity property of SCMF. Then, we com-
pare it with baseline methods PMF [Salakhutdinov and Mnih,
2008b] and biased matrix factorization (biased MF) [Koren,
2008] using the MovieLens? and Netflix? datasets.

4.1 Experimental Settings

There are three MovieLens datasets: ML-100K with 100K
ratings, ML-1M with 1M ratings, and ML-10M with 10M
ratings. The Netflix dataset is even larger with about 100M
ratings. Since our focus in this paper is on CF using rating
data, other sources of information such as implicit feedback
and tagging information are discarded.

We use root mean squared error (RMSE) as the evaluation
measure. It is defined as

1 ~
RMSE = |- > 2] (Rij — Rij)?, (22)
1.3

where IV is the total number of ratings in the test set, I2;;
is the ground-truth rating of user ¢ for item j, Rij denotes
the corresponding predicted rating, and Z?J-— is an indicator
variable used to select the R;; defined in the test set. For all
three methods, we set the regularization parameters via 5-fold

cross validation.

http://www.grouplens.org/node/73
http://www.netflixprize.com/



Training data ML-100K ML-1M ML-10M
D =10 D =20 D =10 D =20 D =10 D =20

PMF 0.9090+0.0178 0.9065+0.0168 | 0.8424£0.0071 0.8388£0.0059 | 0.8038+£0.0023 0.7941+£0.0021
99% | Biased MF | 0.8953+0.0189 0.8923+0.0150 | 0.8408+0.0070 0.8367+0.0067 | 0.8010£0.0027 0.7932+0.0024
SCMF | 0.8891+0.0146 0.8896+0.0198 | 0.8364+0.0065 0.83231-0.0065 | 0.7973+0.0026 0.7874+-0.0027
PMF 0.9286+0.0027 0.9225+0.0026 | 0.8559+0.0022 0.8512+0.0017 | 0.8087+£0.0004 0.8008+0.0006
80% | Biased MF | 0.913540.0039 0.908740.0030 | 0.85314+0.0019 0.84934-0.0020 | 0.805740.0008 0.79914-0.0007
SCMF | 0.909240.0033 0.9068+0.0036 | 0.8496+-0.0019 0.8465+0.0018 | 0.8011+0.0001 0.7944+-0.0006
PMF 0.9595+0.0032  0.9539+0.0025 | 0.8790+0.0009 0.8745+0.0011 | 0.8236£0.0006 0.8189+0.0003
50% | Biased MF | 0.9388+0.0029 0.9337+0.0020 | 0.8766+0.0015 0.8722+0.0012 | 0.8201£0.0002 0.8165+0.0003
SCMF |0.93344+0.0025 0.9331+0.0021 | 0.8707+0.0013 0.8678+0.0007 | 0.8141+0.0004 0.8107+0.0001

Table 1: Results of comparative study on the MovieLens datasets under two different feature dimensionality values and three

different percentages of the training data.
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Figure 4: Results of comparative study on the Netflix dataset under three different feature dimensionality values.

4.2 Empirical Analysis of Covariance Sparsity

We use the MovieLens ML-1M and ML-10M datasets and
train SCMF on 80% of their data. The latent feature dimen-
sionality is set to 10. Figure 3 depicts the correlation ma-
trices derived from the covariance matrices learned. Among
the off-diagonal entries, only a very small fraction show rela-
tively high correlation. Compared with the correlation matrix
learned using PMF (Figure 1), incorporating a sparse covari-
ance prior increases the degree of sparsity of the covariance
matrix learned.

4.3 Quantitative Results of Comparative Study

For the three MovieLens data sets, we try different settings
by using different percentages (99%, 80%, 50%) of the data
for model training. The remaining data are used for testing to
obtain the RMSE results. The training data are randomly se-
lected from each dataset. This process is repeated five times
for each percentage setting and the RMSE reported is the av-
erage over these runs.

Table 1 summarizes the results. In practice, SCMF ends
within 200 iterations. We can see that SCMF consistently out-
performs both PMF and biased MF on all settings of all three
datasets. As the main difference between SCMF and the other
two methods is in the structure of the covariance matrix of the
latent features, this shows that imposing a sparse covariance
prior does bring about performance gain as anticipated.

For the Netflix dataset, we use the training_set data for
training and probe data for testing. Since the Netflix dataset

is even much larger than the largest MovieLens dataset, we
set the latent feature dimensionality to larger values, D =
20, 50, 80, following the settings in [Gantner et al., 2011].
The results are shown as convergence curves in Figure 4. Al-
though SCMF converges a bit more slowly than the other two
methods when D is larger, it can always reach a lower RMSE
and hence the model learned has higher prediction accuracy.

5 Conclusion and Future Work

In this paper, we have proposed an MF model with a sparse
covariance prior for CF applications. The model does not
take either the extreme of assuming that all latent features
are uncorrelated or the other extreme that all are correlated.
Instead, it allows a small number of correlated feature pairs.
Empirical studies show that imposing this particular prior can
lead to performance improvement.

It should be noted that incorporating a sparse covariance
prior on the latent features is not limited to CF applications
that use rating data only. Other sources of information such
as content-based features extracted from user profiles or item
descriptions may also be incorporated into the MF model.
This is one direction in which the current research will be
extended. Moreover, the current MAP estimation approach,
as a point estimation approach, may not be robust enough
for very sparse observed data. A full Bayesian approach to
MF [Salakhutdinov and Mnih, 2008a] provides a potential
solution to this problem. However, it is very challenging to



develop efficient and highly scalable full Bayesian models es-
pecially when non-conjugate priors are used. As another pos-
sible direction in which this research can be extended, some
special structure of the problem will be exploited to devise
a full Bayesian model with a sparse covariance prior which
is a non-conjugate prior. Last but not least, we will apply
SCMF to extremely large datasets by exploiting parallel and
distributed computing platforms.
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