
Learning a Deep Compact Image Representation for
Visual Tracking

Naiyan Wang Dit-Yan Yeung
Department of Computer Science and Engineering
Hong Kong University of Science and Technology
winsty@gmail.com dyyeung@cse.ust.hk

Abstract

In this paper, we study the challenging problem of tracking the trajectory of a
moving object in a video with possibly very complex background. In contrast to
most existing trackers which only learn the appearance of the tracked object on-
line, we take a different approach, inspired by recent advances in deep learning
architectures, by putting more emphasis on the (unsupervised) feature learning
problem. Specifically, by using auxiliary natural images, we train a stacked de-
noising autoencoder offline to learn generic image features that are more robust
against variations. This is then followed by knowledge transfer from offline train-
ing to the online tracking process. Online tracking involves a classification neural
network which is constructed from the encoder part of the trained autoencoder as
a feature extractor and an additional classification layer. Both the feature extrac-
tor and the classifier can be further tuned to adapt to appearance changes of the
moving object. Comparison with the state-of-the-art trackers on some challenging
benchmark video sequences shows that our deep learning tracker is more accurate
while maintaining low computational cost with real-time performance when our
MATLAB implementation of the tracker is used with a modest graphics process-
ing unit (GPU).

1 Introduction

Visual tracking, also called object tracking, refers to automatic estimation of the trajectory of an
object as it moves around in a video. It has numerous applications in many domains, including
video surveillance for security, human-computer interaction, and sports video analysis. While a
certain application may require multiple moving objects be tracked, the typical setting is to treat
each object separately. After the object to track is identified either manually or automatically in the
first video frame, the goal of visual tracking is to automatically track the trajectory of the object
over the subsequent frames. Although existing computer vision techniques may offer satisfactory
solutions to this problem under well-controlled environments, the problem can be very challenging
in many practical applications due to factors such as partial occlusion, cluttered background, fast
and abrupt motion, dramatic illumination changes, and large variations in viewpoint and pose.

Most existing trackers adopt either the generative or the discriminative approach. Generative track-
ers, like other generative models in machine learning, assume that the object being tracked can be
described by some generative process and hence tracking corresponds to finding the most prob-
able candidate among possibly infinitely many. The motivation behind generative trackers is to
develop image representations which can facilitate robust tracking. They have been inspired by
recent advances in fast algorithms for robust estimation and sparse coding, such as the alternat-
ing direction method of multipliers (ADMM) and accelerated gradient methods. Some popular
generative trackers include incremental visual tracking (IVT) [18], which represents the tracked ob-
ject based on principal component analysis (PCA), and the l1 tracker (L1T) [16], which assumes

1

that the tracked object can be represented by a sparse combination of overcomplete basis vectors.
Many extensions [26, 25, 4, 21] have also been proposed. On the other hand, the discriminative
approach treats tracking as a binary classification problem which learns to explicitly distinguish
the object being tracked from its background. Some representative trackers in this category are the
online AdaBoost (OAB) tracker [6], multiple instance learning (MIL) tracker [3], and structured
output tracker (Struck) [8]. While generative trackers usually produce more accurate results under
less complex environments due to the richer image representations used, discriminative trackers are
more robust against strong occlusion and variations since they explicitly take the background into
consideration. We refer the reader to a recent paper [23] which empirically compares many existing
trackers based on a common benchmark.

From the learning perspective, visual tracking is challenging because it has only one labeled instance
in the form of an identified object in the first video frame. In the subsequent frames, the tracker has
to learn variations of the tracked object with only unlabeled data available. With no prior knowledge
about the object being tracked, it is easy for the tracker to drift away from the target. To address
this problem, some trackers taking the semi-supervised learning approach have been proposed [12,
7]. An alternative approach [22] first learns a dictionary of image features (such as SIFT local
descriptors) from auxiliary data and then transfers the knowledge learned to online tracking.

Another issue is that many existing trackers make use of image representations that may not be good
enough for robust tracking in complex environments. This is especially the case for discriminative
trackers which usually put more emphasis on improving the classifiers rather than the image features
used. While many trackers simply use raw pixels as features, some attempts have used more infor-
mative features, such as Haar features, histogram features, and local binary patterns. However, these
features are all handcrafted offline but not tailor-made for the tracked object. Recently, deep learning
architectures have been used successfully to give very promising results for some complicated tasks,
including image classification [14] and speech recognition [10]. The key to success is to make use
of deep architectures to learn richer invariant features via multiple nonlinear transformations. We
believe that visual tracking can also benefit from deep learning for the same reasons.

In this paper, we propose a novel deep learning tracker (DLT) for robust visual tracking. We attempt
to combine the philosophies behind both generative and discriminative trackers by developing a
robust discriminative tracker which uses an effective image representation learned automatically.
There are some key features which distinguish DLT from other existing trackers. First, it uses a
stacked denoising autoencoder (SDAE) [20] to learn generic image features from a large image
dataset as auxiliary data and then transfers the features learned to the online tracking task. Second,
unlike some previous methods which also learn features from auxiliary data, the learned features in
DLT can be further tuned to adapt to specific objects during the online tracking process. Because
DLT makes use of multiple nonlinear transformations, the image representations obtained are more
expressive than those of previous methods based on PCA. Moreover, since representing the tracked
object does not require solving an optimization problem as in previous trackers based on sparse
coding, DLT is significantly more efficient and hence is more suitable for real-time applications.

2 Particle Filter Approach for Visual Tracking

The particle filter approach [5] is commonly used for visual tracking. From the statistical per-
spective, it is a sequential Monte Carlo importance sampling method for estimating the latent state
variables of a dynamical system based on a sequence of observations. Supppse st and yt denote
the latent state and observation variables, respectively, at time t. Mathematically, object tracking
corresponds to the problem of finding the most probable state for each time step t based on the
observations up to the previous time step:

st = argmax p(st | y1:t−1)

= argmax

∫
p(st | st−1) p(st−1 | y1:t−1) dst−1.

(1)

When a new observation yt arrives, the posterior distribution of the state variable is updated accord-
ing to Bayes’ rule:

p(st | y1:t) =
p(yt | st) p(st | y1:t−1)

p(yt | y1:t−1)
. (2)

2

What is specific to the particle filter approach is that it approximates the true posterior state dis-
tribution p(st | y1:t) by a set of n samples, called particles, {sti}ni=1 with corresponding impor-
tance weights {wt

i}ni=1 which sum to 1. The particles are drawn from an importance distribution
q(st | s1:t−1,y1:t) and the weights are updated as follows:

wt
i = wt−1

i · p(y
t | sti) p(sti | s

t−1
i)

q(st | s1:t−1,y1:t)
. (3)

For the choice of the importance distribution q(st | s1:t−1,y1:t), it is often simplified to a first-order
Markov process q(st | st−1) in which state transition is independent of the observation. Conse-
quently, the weights are updated as wt

i = wt−1
i p(yt | sti). Note that the sum of weights may no

longer be equal to 1 after each weight update step. In case it is smaller than a threshold, resampling
is applied to draw n particles from the current particle set in proportion to their weights and then
resetting their weights to 1/n. If the weight sum is above the threshold, linear normalization is
applied to ensure that the weights sum to 1.

For object tracking, the state variable si usually represents the six affine transformation parameters
which correspond to translation, scale, aspect ratio, rotation, and skewness. In particular, each
dimension of q(st | st−1) is modeled independently by a normal distribution. For each frame, the
tracking result is simply the particle with the largest weight. While many trackers also adopt the
same particle filter approach, the main difference lies in the formulation of the observation model
p(yt | sti). Apparently, a good model should be able to distinguish well the tracked object from
the background while still being robust against various types of object variation. For discriminative
trackers, the formulation is often to set the probability exponentially related to the confidence of the
classifier output.

The particle filter framework is the dominant approach in visual tracking for several reasons. First,
it is more general than the Kalman filter approach by going beyond the Gaussian distribution. More-
over, it approximates the posterior state distribution by a set of particles instead of just a single point
such as the mode. For visual tracking, this property makes it easier for the tracker to recover from
incorrect tracking results. A tutorial on using particle filters for visual tracking can be found in [2].
Some recent work, e.g., [15], further improves the particle filter framework for visual tracking.

3 The DLT Tracker

We now present our DLT tracker. During the offline training stage, unsupervised feature learning is
carried out by training an SDAE with auxiliary image data to learn generic natural image features.
Layer-by-layer pretraining is first applied and then the whole SDAE is fine-tuned. During the online
tracking process, an additional classification layer is added to the encoder part of the trained SDAE
to result in a classification neural network. More details are provided in the rest of this section.

3.1 Offline Training with Auxiliary Data

3.1.1 Dataset and Preprocessing

We use the Tiny Images dataset [19] as auxiliary data for offline training. The dataset was collected
from the web by providing non-abstract English nouns to seven search engines, covering many of
the objects and scenes found in the real world. From the almost 80 million tiny images each of
size 32× 32, we randomly sample 1 million images for offline training. Since most state-of-the-art
trackers included in our empirical comparison use only grayscale images, we have converted all the
sampled images to grayscale (but our method can also use the color images directly if necessary).
Consequently, each image is represented by a vector of 1024 dimensions corresponding to 1024
pixels. The feature value of each dimension is linearly scaled to the range [0, 1] but no further
preprocessing is applied.

3.1.2 Learning Generic Image Features with a Stacked Denoising Autoencoder

The basic building block of an SDAE is a one-layer neural network called a denoising autoencoder
(DAE), which is a more recent variant of the conventional autoencoder. It learns to recover a data
sample from its corrupted version. In so doing, robust features are learned since the neural network

3

contains a “bottleneck” which is a hidden layer with fewer units than the input units. We show the
architecture of DAE in Fig. 1(a).

Let there be a total of k training samples. For the ith sample, let xi denote the original data sample
and x̃i be the corrupted version of xi, where the corruption could be masking corruption, additive
Gaussian noise or salt-and-pepper noise. For the network weights, let W and W′ denote the weights
for the encoder and decoder, respectively, which may be tied though it is not necessary. Similarly,
b and b′ refer to the bias terms. A DAE learns by solving the following (regularized) optimization
problem:

min
W,W′,b,b′

k∑
i=1

‖xi − x̂i‖22 + λ(‖W‖2F + ‖W′‖2F), (4)

where
hi = f(Wx̃i + b)

x̂i = f(W′hi + b′).
(5)

Here λ is a parameter which balances the reconstruction loss and weight penalty terms, ‖·‖F denotes
the Frobenius norm, and f(·) is a nonlinear activation function which is typically the logistic sigmoid
function or hyperbolic tangent function. By reconstructing the input from a corrupted version of it,
a DAE is more effective than the conventional autoencoder in discovering more robust features by
preventing the autoencoder from simply learning the identity mapping.

To further enhance learning meaningful features, sparsity constraints [9] are imposed on the mean
activation values of the hidden units. If the logistic sigmoid activation function is used, the output
of each unit may be regarded as the probability of it being active. Let ρj denote the target sparsity
level of the jth unit and ρ̂j its average empirical activation rate. The cross-entropy of ρ and ρ̂ can
then be introduced as an additional penalty term to Eqn. 4:

H(ρ ‖ ρ̂) = −
m∑

j=1

[
ρj log(ρ̂j) + (1− ρj) log(1− ρ̂j)

]

ρ̂ =
1

k

k∑
i=1

hi,

(6)

where m is the number of hidden units. After the pretraining phase, the SDAE can be unrolled to
form a feedforward neural network. The whole network is fine-tuned using the classical backprop-
agation algorithm. To increase the convergence rate, either the simple momentum method or more
advanced optimization techniques such as the L-BFGS or conjugate gradient method can be applied.

For the network architecture, we use overcomplete filters in the first layer. This is a deliberate
choice since it has been found that an overcomplete basis can usually capture the image structure
better. This is in line with the neurophysiological mechanism in the V1 visual cortex [17]. Then the
number of units is reduced by half whenever a new layer is added until there are only 256 hidden
units, serving as the bottleneck of the autoencoder. The whole structure of the SDAE is depicted in
Fig. 1(b). To further speed up pretraining in the first layer to learn localized features, we divide each
32 × 32 tiny image into five 16 × 16 patches (upper left, upper right, lower left, lower right, and
the center one which overlaps with the other four), and then train five DAEs each of which has 512
hidden units. After that, we initialize a large DAE with the weights of the five small DAEs and then
train the large DAE normally. Some randomly selected filters in the first layer are shown in Fig. 2.
As expected, most of the filters play the role of highly localized edge detectors.

3.2 Online Tracking Process

The object to track is specified by the location of its bounding box in the first frame. Some neg-
ative examples are collected from the background at a short distance from the object. A sigmoid
classification layer is then added to the encoder part of the SDAE obtained from offline training.
The overall network architecture is shown in Fig. 1(c). When a new video frame arrives, we first
draw particles according to the particle filter approach. The confidence pi of each particle is then
determined by making a simple forward pass through the network. An appealing characteristic of
this approach is that the computational cost of this step is very low even though it has high accuracy.

4

(a) (b) (c)

Figure 1: Some key components of the network architecture: (a) denoising autoencoder; (b) stacked
denoising autoencoder; (c) network for online tracking.

Figure 2: Some filters in the first layer of the learned SDAE.

If the maximum confidence of all particles in a frame is below a predefined threshold τ , it may
indicate significant appearance change of the object being tracked. To address this issue, the whole
network can be tuned again in case this happens. We note that the threshold τ should be set by
maintaining a tradeoff. If τ is too small, the tracker cannot adapt well to appearance changes. On
the other hand, if τ is too large, even an occluding object or the background may be mis-treated as
the tracked object and hence leads to drifting of the target.

4 Experiments

We empirically compare DLT with some state-of-the-art trackers in this section using 10 challenging
benchmark video sequences. These trackers are: MTT [26], CT [24], VTD [15], MIL [3], a latest
variant of L1T [4], TLD [13], and IVT [18]. We use the original implementations of these trackers
provided by their authors. In case a tracker can only deal with grayscale video, the rgb2gray
function provided by the MATLAB Image Processing Toolbox is used to convert the color video
to grayscale. To accelerate the computation, we also utilize GPU computation provided by the
MATLAB Parallel Computing Toolbox in both offline training and online tracking. The codes and
supplemental material are provided on the project page: http://winsty.net/dlt.html.

4.1 DLT Implementation Details

We use the gradient method with momentum for optimization. The momentum parameter is set
to 0.9. For offline training of the SDAE, we inject Gaussian noise with a variance of 0.0004 to
generate the corrupted input. We set λ = 0.0001, ρi = 0.05, and the mini-batch size to 100. For
online tuning, we use a larger λ value of 0.002 to avoid overfitting and a smaller mini-batch size
of 10. The threshold τ is set to 0.9. The particle filter uses 1000 particles. For other parameters such
as the affine parameters in the particle filter and the search window size in the other methods, we
perform grid search to determine the best values. The same setting is applied to all other methods
compared if applicable.

4.2 Quantitative Comparison

We use two common performance metrics for quantitative comparison: success rate and central-
pixel error. Let BBT denote the bounding box produced by a tracker and BBG the ground-truth

5

http://winsty.net/dlt.html

bounding box. For each video frame, a tracker is considered successful if the overlap percentage
area(BBT∩BBG)
area(BBT∪BBG) > 50%. As for the central-pixel error, it is defined as the Euclidean distance (in
pixels) between the centers of BBT and BBG. The quantitative comparison results are summarized
in Table 1 . For each row which corresponds to one of 10 video sequences, the best result is shown
in red and second best in blue. We also report the central-pixel errors over all frames for each video
sequence. Since TLD can report that the tracked object is missing in some frames, we exclude it
from the central-pixel error comparison. On average, DLT is the best according to both performance
metrics. For most video sequences, it is among the best two methods. We also list the running time
of each sequence in detail in Table 2. Thanks to advances of the GPU technology, our tracker can
achieve an average frame rate of 15fps (frames per second) which is sufficient for many real-time
applications.

Ours MTT CT VTD MIL L1T TLD IVT
car4 100(6.0) 100(3.4) 24.7(95.4) 35.2(41.5) 24.7(81.8) 30.8(16.8) 0.2(-) 100(4.2)
car11 100(1.2) 100(1.3) 70.7(6.0) 65.6(23.9) 68.4(19.3) 100(1.3) 29.8(-) 100(3.2)
davidin 66.1(7.1) 68.6(7.8) 25.3(15.3) 49.4(27.1) 17.7(13.1) 27.3(17.5) 44.4(-) 92.0(3.9)
trellis 93.6(3.3) 66.3(33.7) 23.0(80.4) 30.1(81.3) 25.9(71.7) 62.1(37.6) 48.9(-) 44.3(44.7)
woman 67.1(9.4) 19.8(257.8) 16.0(109.6) 17.1(133.6) 12.2(123.7) 21.1(138.2) 5.8(-) 21.5(111.2)
animal 87.3(10.2) 88.7(11.1) 85.9(10.8) 91.5(10.8) 63.4(16.1) 85.9(10.4) 63.4(-) 81.7(10.8)
shaking 88.4(11.5) 12.3(28.1) 92.3(10.9) 99.2(5.2) 26.0(28.6) 0.5(90.8) 15.6(-) 1.1(138.4)
singer1 100(3.3) 35.6(34.0) 10.3(16.8) 99.4(3.4) 10.3(26.0) 100(3.7) 53.6(-) 96.3(7.9)
surfer 86.5(4.6) 83.8(6.9) 13.5(18.7) 90.5(5.5) 44.6(14.7) 75.7(9.5) 40.5(-) 90.5(5.9)
bird2 65.9(16.8) 9.2(92.8) 58.2(19.7) 13.3(151.1) 69.4(16.3) 45.9(57.5) 31.6(-) 10.2(104.1)
average 85.5(7.3) 58.4(47.6) 42.0(38.4) 59.1(48.4) 36.3(41.1) 54.9(40.1) 33.4(-) 63.8(43.4)

Table 1: Comparison of 8 trackers on 10 video sequences. The first number denotes the success rate
(in percentage), while the number in parentheses denotes the central-pixel error (in pixels).

car4 car11 davidin trellis woman animal shaking singer1 surfer bird2 Average
15.27 16.04 13.20 17.30 20.92 10.93 12.72 15.18 14.17 14.36 15.01

Table 2: Comparison of running time on 10 video sequences (in fps).

0 200 400 600 800
0

50

100

150

200

250

Frame Number

C
en

te
r

E
rr

o
r

car4

0 100 200 300 400
0

20

40

60

80

100

Frame Number

C
en

te
r

E
rr

o
r

car11

0 100 200 300 400 500
0

50

100

150

Frame Number

C
en

te
r

E
rr

o
r

davidin

0 200 400 600
0

50

100

150

200

250

Frame Number

C
en

te
r

E
rr

o
r

trellis

0 200 400 600
0

200

400

600

800

Frame Number

C
en

te
r

E
rr

o
r

woman

0 200 400 600 800
0

200

400

600

800

Frame Number

C
en

te
r

E
rr

o
r

animal

0 100 200 300 400
0

50

100

150

200

250

300

Frame Number

C
en

te
r

E
rr

o
r

shaking

0 100 200 300 400
0

50

100

150

200

250

300

Frame Number

C
en

te
r

E
rr

o
r

singer1

0 100 200 300 400
0

10

20

30

40

50

60

Frame Number

C
en

te
r

E
rr

o
r

surfer

0 20 40 60 80 100
0

50

100

150

200

250

300

Frame Number

C
en

te
r

E
rr

o
r

bird2

Figure 3: Frame-by-frame comparison of 7 trackers on 10 video sequences in terms of central-pixel
error (in pixels).

4.3 Qualitative Comparison

Fig. 4 shows some key frames with bounding boxes reported by all eight trackers for each of the
10 video sequences. More detailed results for the complete video sequences can be found in the
supplemental material.

In both the car4 and car11 sequences, the tracked objects are cars moving on an open road. For car4,
the challenge is that the illumination changes greatly near the entrance of a tunnel. For car11, the

6

environment is very dark with illumination in the cluttered background. Since the car being tracked
is a rigid object, its shape does not change much and hence generative trackers like IVT, L1T and
MTT generally perform well for these two sequences. DLT can also track the car accurately.

In the davidin and trellis sequences, each tracker has to track a face in indoor and outdoor en-
vironments, respectively. Both sequences are challenging because the illumination and pose vary
drastically along the video. Moreover, out-of-plane rotation occurs in some frames. As a conse-
quence, all trackers drift or even fail to different degrees. Generally speaking, DLT and MTT yield
the best results which are followed by IVT.

In the woman sequence, we track a woman walking in the street. The woman is severely occluded
several times by the parked cars. TLD first fails at frame 63 because of the pose change. All other
trackers compared fail when the woman walks close to the car at about frame 130. DLT can follow
the target accurately.

In the animal sequence, the target is a fast moving animal with motion blur. All methods can merely
track the target to the end. Only MIL and TLD fail in some frames. TLD is also misled by some
similar objects in the background, e.g., in frame 41.

Both the shaking and singer1 sequences are recordings on the stage with illumination changes. For
shaking, the pose of the head being tracked also changes. L1T, IVT and TLD totally fail before
frame 10, while MTT and MIL show some drifting effects then. VTD and DLT give satisfactory
results which are followed by CT. Compared to shaking, the singer1 sequence is easier to track. All
trackers except MTT can track the object but CT and MIL do not support scale change and hence
the results are less satisfactory.

In the surfer sequence, the goal is to track the head of a surfer while its pose changes along the video
sequence. All trackers can merely track it except that TLD shows an incorrect scale and both CT
and MIL drift slightly.

The bird2 sequence is very challenging since the pose of the bird changes drastically when it is
occluded. Most trackers fail or drift at about frame 15 with the exception of L1T, TLD and DLT.
However, after the bird turns, L1T and TLD totally fail but CT and MIL can recover to some degree.
DLT can track the bird accurately along the entire sequence.

5 Discussions

Our proposed method is similar in spirit to that of [22] but there are some key differences that are
worth noting. First, we learn generic image features from a larger and more general dataset rather
than a smaller set with only some chosen image categories. Second, we learn the image features from
raw images automatically instead of relying on handcrafted SIFT features. Third, further learning is
allowed during the online tracking process of our method so as to adapt better to the specific object
being tracked.

For the choice of deep network architecture, we note that another potential candidate is the popu-
lar convolutional neural network (CNN) model. The resulting tracker would be similar to previous
patch (or fragment) based methods [1, 11] which have been shown to be robust against partial oc-
clusion. Nevertheless, current research on CNN focuses on learning shift-invariant features for such
tasks as image classification and object detection. However, the nature of object tracking is very dif-
ferent in that it has to learn shift-variant but similarity-preserving features to overcome the drifting
problem. As of now, there is very little relevant work, with the possible exception of [11] which
tries to improve the pooling step in the sparse coding literature to address this issue. This could be
an interesting future research direction to pursue.

6 Concluding Remarks

In this paper, we have successfully taken deep learning to a new territory of challenging applications.
Noting that the key to success for deep learning architectures is the learning of useful features, we
first train a stacked denoising autoencoder using many auxiliary natural images to learn generic
image features. This alleviates the problem of not having much labeled data in visual tracking
applications. After offline training, the encoder part of the SDAE is used as a feature extractor

7

ca
r4

ca
r1

1
da

vi
di

n
tr

el
lis

w
om

an
an

im
al

sh
ak

in
g

si
ng

er
1

su
rf

er
bi

rd
2

Figure 4: Comparison of 8 trackers on 10 video sequences in terms of the bounding box reported.

during the online tracking process to train a classification neural network to distinguish the tracked
object from the background. This can be regarded as knowledge transfer from offline training using
auxiliary data to online tracking. Since further tuning is allowed during the online tracking process,
both the feature extractor and the classifier can adapt to appearance changes of the moving object.
Through quantitative and qualitative comparison with state-of-the-art trackers on some challenging
benchmark video sequences, we demonstrate that our deep learning tracker gives very encouraging
results while having low computational cost.

As the first work on applying deep neural networks to visual tracking, many opportunities remain
open for further research. As discussed above, it would be an interesting direction to investigate a
shift-variant CNN. Also, the classification layer in our current tracker is just a linear classifier for
simplicity. Extending it to more powerful classifiers, as in other discriminative trackers, may provide
more room for further performance improvement.

Acknowledgment

This research has been supported by General Research Fund 621310 from the Research Grants
Council of Hong Kong.

8

References
[1] A. Adam, E. Rivlin, and I. Shimshoni. Robust fragments-based tracking using the integral histogram. In

CVPR, pages 798–805, 2006.

[2] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle filters for online
nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50(2):174–188,
2002.

[3] B. Babenko, M. Yang, and S. Belongie. Robust object tracking with online multiple instance learning.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(8):1619–1632, 2011.

[4] C. Bao, Y. Wu, H. Ling, and H. Ji. Real time robust L1 tracker using accelerated proximal gradient
approach. In CVPR, pages 1830–1837, 2012.

[5] A. Doucet, D. N. Freitas, and N. Gordon. Sequential Monte Carlo Methods In Practice. Springer, New
York, 2001.

[6] H. Grabner, M. Grabner, and H. Bischof. Real-time tracking via on-line boosting. In BMVC, pages 47–56,
2006.

[7] H. Grabner, C. Leistner, and H. Bischof. Semi-supervised on-line boosting for robust tracking. In ECCV,
pages 234–247, 2008.

[8] S. Hare, A. Saffari, and P. H. Torr. Struck: Structured output tracking with kernels. In ICCV, pages
263–270, 2011.

[9] G. Hinton. A practical guide to training restricted Boltzmann machines. In Neural Networks: Tricks of
the Trade, pages 599–619. 2012.

[10] G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen,
T. Sainath, and B. Kingsbury. Deep neural networks for acoustic modeling in speech recognition. IEEE
Signal Processing Magazine, 29(6):82–97, 2012.

[11] X. Jia, H. Lu, and M. Yang. Visual tracking via adaptive structural local sparse appearance model. In
CVPR, pages 1822–1829, 2012.

[12] Z. Kalal, J. Matas, and K. Mikolajczyk. P-N learning: Bootstrapping binary classifiers by structural
constraints. In CVPR, pages 49–56, 2010.

[13] Z. Kalal, K. Mikolajczyk, and J. Matas. Tracking-learning-detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 34(7):1409–1422, 2012.

[14] A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with deep convolutional neural
networks. In NIPS, pages 1106–1114, 2012.

[15] J. Kwon and K. Lee. Visual tracking decomposition. In CVPR, pages 1269–1276, 2010.

[16] X. Mei and H. Ling. Robust visual tracking using l1 minimization. In ICCV, pages 1436–1443, 2009.

[17] B. Olshausen and D. Field. Sparse coding with an overcomplete basis set: A strategy employed by V1?
Vision Research, 37(23):3311–3326, 1997.

[18] D. Ross, J. Lim, R. Lin, and M. Yang. Incremental learning for robust visual tracking. International
Journal of Computer Vision, 77(1):125–141, 2008.

[19] A. Torralba, R. Fergus, and W. Freeman. 80 million tiny images: A large data set for nonparametric object
and scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(11):1958–
1970, 2008.

[20] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked denoising autoencoders:
Learning useful representations in a deep network with a local denoising criterion. Journal of Machine
Learning Research, 11:3371–3408, 2010.

[21] D. Wang, H. Lu, and M. Yang. Online object tracking with sparse prototypes. IEEE Transactions on
Image Processing, 22(1), 2013.

[22] Q. Wang, F. Chen, J. Yang, W. Xu, and M. Yang. Transferring visual prior for online object tracking.
IEEE Transactions on Image Processing, 21(7):3296–3305, 2012.

[23] Y. Wu, J. Lim, and M. Yang. Online object tracking: A benchmark. In CVPR, 2013.

[24] K. Zhang, L. Zhang, and M.-H. Yang. Real-time compressive tracking. In ECCV, pages 864–877, 2012.

[25] T. Zhang, B. Ghanem, S. Liu, and N. Ahuja. Low-rank sparse learning for robust visual tracking. ECCV,
pages 470–484, 2012.

[26] T. Zhang, B. Ghanem, S. Liu, and N. Ahuja. Robust visual tracking via multi-task sparse learning. In
CVPR, pages 2042–2049, 2012.

9

	Introduction
	Particle Filter Approach for Visual Tracking
	The DLT Tracker
	Offline Training with Auxiliary Data
	Dataset and Preprocessing
	Learning Generic Image Features with a Stacked Denoising Autoencoder

	Online Tracking Process

	Experiments
	DLT Implementation Details
	Quantitative Comparison
	Qualitative Comparison

	Discussions
	Concluding Remarks

