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Abstract

We present an approach to recover absolute 3D human
poses from multi-view images by incorporating multi-view
geometric priors in our model. It consists of two separate
steps: (1) estimating the 2D poses in multi-view images and
(2) recovering the 3D poses from the multi-view 2D poses.
First, we introduce a cross-view fusion scheme into CNN to
jointly estimate 2D poses for multiple views. Consequently,
the 2D pose estimation for each view already benefits from
other views. Second, we present a recursive Pictorial Struc-
ture Model to recover the 3D pose from the multi-view 2D
poses. It gradually improves the accuracy of 3D pose with
affordable computational cost. We test our method on two
public datasets H36M and Total Capture. The Mean Per
Joint Position Errors on the two datasets are 26mm and
29mm, which outperforms the state-of-the-arts remarkably
(26mm vs 52mm, 29mm vs 35mm).

1. Introduction
The task of 3D pose estimation has made significant

progress due to the introduction of deep neural networks.
Most efforts [15, 12, 32, 16, 22, 18, 28, 27, 6] have been de-
voted to estimating relative 3D poses from monocular im-
ages. The estimated poses are centered around the pelvis
joint thus do not know their absolute locations in the envi-
ronment (world coordinate system).

In this paper, we tackle the problem of estimating abso-
lute 3D poses in the world coordinate system from multiple
cameras [1, 14, 4, 17, 3, 18, 19]. Most works follow the
pipeline of first estimating 2D poses and then recovering 3D
pose from them. However, the latter step usually depends
on the performance of the first step which unfortunately of-
ten has large errors in practice especially when occlusion or
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motion blur occurs in images. This poses a big challenge
for the final 3D estimation.

On the other hand, using the Pictorial Structure Model
(PSM) [13, 17, 3] for 3D pose estimation can alleviate the
influence of inaccurate 2D joints by considering their spatial
dependence. It discretizes the space around the root joint by
an N ×N ×N grid and assigns each joint to one of the N3

bins (hypotheses). It jointly minimizes the projection error
between the estimated 3D pose and the 2D pose, along with
the discrepancy of the spatial configuration of joints and its
prior structures. However, the space discretization causes
large quantization errors. For example, when the space sur-
rounding the human is of size 2000mm and N is 32, the
quantization error is as large as 30mm. We could reduce the
error by increasing N , but the inference cost also increases
at O(N6), which is usually intractable.

Our work aims to address the above two challenges in
2D and 3D pose estimation, respectively. First, we obtain
more accurate 2D poses by jointly estimating them from
multiple views using a CNN based approach. It addresses
the challenge of finding and fusing the corresponding fea-
tures between different views for 2D pose heatmap estima-
tion. Figure 1 shows the pipeline. In the fusion layer, we
learn the pixel correspondence across different views, and
fuse the corresponding features. The fusion layer can be
integrated with any CNN based 2D pose estimators in an
end-to-end manner without intermediate supervision.

Second, we present Recursive Pictorial Structure Model
(RPSM), to recover the 3D pose from the estimated multi-
view 2D pose heatmaps. Different from PSM which directly
discretizes the space into a large number of bins in order to
control the quantization error, RPSM recursively discretizes
the space around each joint location (estimated in the previ-
ous iteration) into a finer-grained grid using a small num-
ber of bins. As a result, the estimated 3D pose is refined step
by step. Since N in each step is usually small, the inference
speed is very fast for a single iteration. In our experiments,

1



fusion layer
camera 1

camera 2

gt
heatmap

detected
heatmap

detected
heatmap

fused
heatmap

fused
heatmap

gt
heatmap

L2 Loss

L2 Loss

L2 Loss

L2 Loss

Figure 1. Cross-view fusion for 2D pose estimation. The images
are first fed into a CNN to get initial heatmaps. Then the heatmap
of each view is fused with the heatmaps from other views through
a fusion layer. The whole network is learned end-to-end.

RPSM decreases the error by at least 50% compared to PSM
with little increase of inference time.

For 2D pose estimation on the H36M dataset [11], the
average detection rate over all joints improves from 89% to
96% on the test set. The improvement is most significant
for the most challenging “wrist” joint. For 3D pose esti-
mation, changing PSM to RPSM dramatically reduces the
average error from 77mm to 26mm. Even compared with
the state-of-the-art method with an average error 52mm, our
approach also cuts the error in half. We further evaluate our
approach on the Total Capture dataset [26] to validate its
generalization ability. It still outperforms the state-of-the-
art [25] by a notable margin (29mm vs 35mm).

2. Related Work
We first review the related work on multi-view 3D pose

estimation and discuss how they differ from our work. Then
we discuss some techniques on feature fusion.

Multi-view 3D Pose Estimation: Many approaches
[14, 10, 4, 17, 3, 18, 19] are proposed for multi-view pose
estimation. They first define a body model represented as
simple primitives, and then optimize the model parameters
to align the projections of the body model with the image
features. These approaches differ in terms of the used im-
age features and optimization algorithms.

We focus on the Pictorial Structure Model (PSM) which
is widely used in object detection [8, 9] to model the spa-
tial dependence between the object parts. This technique is
also used for 2D [31, 5, 1] and 3D [4, 17] pose estimation
where the parts are the body joints or limbs. In [1], Amin
et al. first estimate the 2D poses in a multi-view setup with
PSM and then obtain the 3D poses by direct triangulation.
Later Burenius et al. [4] and Pavlakos et al. [17] extend
PSM to multi-view 3D human pose estimation. For exam-
ple, in [17], they first estimate 2D poses independently for
each view and then recover the 3D pose using PSM. Our
work differs from [17] in that we extend PSM to a recursive
version, i.e. RPSM, which efficiently refines the 3D pose es-
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Figure 2. Epipolar geometry: an image point Y u
P back-projects to

a ray in 3D defined by the camera Cu and Y u
P . This line is imaged

as I in the camera Cv . The 3D point P which projects to Y u
P must

lie on this ray, so the image of P in camera Cv must lie on I .

timations step by step. In addition, they [17] do not perform
cross-view feature fusion as we do.

Multi-image Feature Fusion: Fusing features from dif-
ferent sources is common in the literature. For example, in
[33], Zhu et al. propose to warp the features of the neigh-
boring frames to the current frame according to optical flow
to robustly detect the objects. Ding et al. [7] propose to ag-
gregate the multi-scale features which achieves better seg-
mentation accuracy for both large and small objects. Amin
et al. [1] propose to estimate 2D poses by exploring the ge-
ometric relation between multi-view images. It differs from
our work in that it does not fuse features from other views to
obtain better 2D heatmaps. Instead, they use the multi-view
3D geometric relation to select the joint locations from the
“imperfect” heatmaps. To the best of our knowledge, there
is no previous work which fuses the multi-view features to
obtain better 2D pose heatmaps because it is a challeng-
ing task to find the corresponding features across different
views which is one of the contributions of this work.

3. Multi-view Fusion for 2D Pose Estimation

Our 2D pose estimator takes multi-view images as input,
generates initial pose heatmaps respectively for each, and
then fuses the heatmaps across different views such that the
heatmap of each view benefits from others. The process
is accomplished in a single CNN and can be trained end-
to-end. Figure 1 shows the pipeline for two-view fusion.
Extending it to multi-views is trivial where the heatmap of
each view is fused with the heatmaps of all other views.
The core of our fusion approach is to find the corresponding
features between a pair of views.

Suppose there is a point P in 3D space. See Figure 2. Its
projections in view u and v are Y u

P ∈ Zu and Y v
P ∈ Zv ,

respectively where Zu and Zv denote all pixel locations in
the two views, respectively. The heatmaps of view u and
v are Fu = {xu

1 , · · · ,xu
|Zu|} and Fv = {xv

1, · · · ,xv
|Zv|}.

The core idea of fusing a feature in view u, say xu
i , with the

features fromFv is to establish the correspondence between
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Figure 3. Two-view feature fusion for one channel. The top grid
denotes the feature map of view A. Each location in view A is con-
nected to all pixels in view B by a weight matrix. The weights are
mostly positive for locations on the epipolar line (numbers in the
yellow cells). Different locations in view A have different weights
because they correspond to different epipolar lines.

the two views:

xu
i ← xu

i +

|Zv|∑
j=1

ωj,i · xv
j , ∀i ∈ Zu, (1)

where ωj,i is a to be determined scalar. Ideally, for a specific
i, only one ωj,i should be positive, while the rest are zero.
Specifically, ωj,i is positive when the pixel i in view u and
pixel j in view v correspond to the same 3D point.

Suppose we know only Y u
P , how can we find the corre-

sponding point Y v
P in the image of a different view? We

know Y v
P is guaranteed to lie on the epipolar line I . But

since we do not know the depth of P , which means it may
move on the line defined by Cu and Y u

P , we cannot deter-
mine the exact location of Y v

P on I . This ambiguity poses a
challenge for the cross view fusion.

Our solution is to fuse xu
i with all features on the line

I . This may sound brutal at the first glance, but is in fact
elegant. Since fusion happens in the heatmap layer, ideally,
xv
j should have large response at Y v

P (the cyan point) and
zeros at other locations on the epipolar line I . It means the
non-corresponding locations on the line will contribute no
or little to the fusion. So fusing all pixels on the epipolar
line is a simple yet effective solution.

3.1. Implementation

The feature fusion rule (Eq. (1)) can be interpreted as a
fully connected layer imposed on each channel of the pose
heatmaps where ω are the learnable parameters. Figure 3
illustrates this idea. Different channels of the feature maps,
which correspond to different joints, share the same weights
because the cross view relations do not depend on the joint
types but only depend on the pixel locations in the camera
views. Treating feature fusion as a neural network layer
enables the end-to-end learning of the weights.

We investigate two methods to train the network. In the
first approach, we clip the positive weights to zero during

training if the corresponding locations are off the epipolar
line. In the second approach, we allow the network to freely
learn the weights from the training data and it turns out that
the learned weights for the locations off the epipolar line
are mostly non-positive. The final 2D pose estimation re-
sults are also similar for the two approaches. So we use the
second approach for training because it is simpler.

3.2. Limitation and Solution

The learned fusion weights which implicitly encode the
information of epipolar geometry are dependent on the cam-
era configurations. As a result, the model trained on a par-
ticular camera configuration cannot be directly applied to
another different configuration.

We propose an approach to automatically adapt/train our
model in a new environment without any manually labeled
2D and 3D poses. We adopt a semi-supervised training ap-
proach following [20]. First, we train a single view 2D pose
estimator [30] on the MPII dataset with ground truth pose
annotations. Then we apply the model to the images cap-
tured in the new environment and harvest a set of (noisy)
poses as pseudo labels. We keep the labels which are con-
sistent across different views following [20]. Finally, we
train our fusion model with these pseudo labels. We will
evaluate this approach in the experiment section.

4. RPSM for Multi-view 3D Pose Estimation
We represent a human body as a graphical model with

M random variables J = {J1,J2, · · · ,JM} in which each
variable corresponds to a body joint. Each variable Ji de-
fines a state vector Ji = [xi, yi, zi] as the 3D position of the
body joint in the world coordinate system and takes its value
from a discrete state space. See Figure 4. An edge between
two variables denotes their conditional dependence and can
be interpreted as a physical constraint.

4.1. Pictorial Structure Model

Given a configuration of 3D pose J and multi-view 2D
pose heatmaps F , the posterior becomes [3]:

p(J |F) =
1

Z(F)

M∏
i=1

φconf
i (Ji,F)

∏
(m,n)∈E

ψlimb(Jm,Jn),

(2)
where Z(F) is the partition function and E are the graph
edges as shown in Figure 4. The unary potential func-
tions φconf

i (Ji,F) are computed based on the previously
estimated multi-view 2D pose heatmaps F . The pairwise
potential functions ψlimb(Jm,Jn) encode the limb length
constraints between the joints.

Discrete state space: We first triangulate the 3D loca-
tion of the root joint using its 2D locations detected in all
views. Then the state space of the 3D pose is constrained to
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Figure 4. Graphical model of human body used in our experiments.
There are 17 variables and 16 edges.

be within a 3D bounding volume centered at the root joint.
The edge length s of the volume is set to be 2000mm. The
volume is discretized by an N × N × N grid G. All body
joints share the same state space G which consists of N3

discrete locations (bins).
Unary potentials: Every body joint hypothesis, i.e. a

bin in the grid G, is defined by its 3D position in the world
coordinate system. We project it to the pixel coordinate sys-
tem of all camera views using the camera parameters, and
get the corresponding joint confidence from F . We com-
pute the average confidence over all camera views as the
unary potential for the hypothesis.

Pairwise potentials: Offline, for each pair of joints
(Jm,Jn) in the edge set E , we compute the average dis-
tance ˜lm,n on the training set as limb length priors. During
inference, the pairwise potential is defined as:

ψlimb(Jm,Jn) =

{
1, if lm,n ∈ [ ˜lm,n − ε, ˜lm,n + ε]
0, otherwise

,

(3)
where lm,n is the distance between Jm and Jn. The pair-
wise term favors 3D poses having reasonable limb lengths.
In our experiments, ε is set to be 150mm.

Inference: The final step for obtaining the 3D pose is the
inference which basically maximizes the posterior (Eq. (2))
over the discrete state space. Because the graph is acyclic,
it can be optimized by dynamic programming with global
optimum guarantee. The computational complexity is of
the order of O(N6).

4.2. Recursive Pictorial Structure Model

The PSM model suffers from large quantization error re-
sulted from space discretization. For example, when we set
N = 32 as in the previous work, the quantization error is
as large as 30mm (i.e. s

32×2 where s = 2000 is the edge
length of the bounding volume). Increasing N can reduce
the quantization error, but the computation time quickly be-
comes intractable. For example, if N = 64, the inference
speed will be 64 = (64

32 )6 times slower.
Instead of using a large N in one iteration, we propose

to recursively refine the joint locations through a multiple

𝐿𝑚

𝐿𝑛

𝐺𝑖
(𝑚)

𝐺𝑗
(𝑛)

Figure 5. Illustration of the recursive pictorial structure model.
Suppose we have estimated the coarse locations Lm and Ln for
the two joints Jm and Jn, respectively, in the previous iteration.
Then we divide the space around the two joints into finer-grained
grids and estimate more precise locations.

stage process and use a small N in each stage. In the
first stage (t = 0), we discretize the 3D bounding vol-
ume space around the triangulated root joint using a coarse
grid (N = 16) and obtain an initial 3D pose estimation
L = (L1, · · · , LM ) using the PSM approach.

Fo the following stages (t ≥ 1), for each joint Ji, we
discretize the space around its current location Li into an
2 × 2 × 2 grid G(i). The space discretization here differs
from PSM in two-fold. First, different joints have their own
grids but in PSM all joints share the same grid. See Figure
5 for illustration of the idea. Second, the edge length of
the bounding volume decreases with iterations: st = st−1

N .
That is the main reason why the grid becomes finer-grained
compared to the previous stage.

Instead of refining each joint independently, we simul-
taneously refine all joints considering their spatial relations.
Recall that we know the center locations, sizes and the num-
ber of bins of the grids. So we can calculate the location of
every bin in the grids with which we can compute the unary
and pairwise potentials. It is worth noting that the pairwise
potentials should be computed on the fly because it depends
on the previously estimated locations. However, because
we set N to be a small number (two in our experiments),
this computation is fast.

4.3. Relation to Bundle Adjustment [24]

Bundle adjustment [24] is also a popular tool for refin-
ing 3D reconstructions. RPSM differs from it in two as-
pects. First, they reach different local optimums due to
their unique ways of space exploration. Bundle adjustment
explores in an incremental way while RPSM explores in a
divide and conquer way. Second, computing gradients by
finite-difference in bundle adjustment is not stable because
most entries of heatmaps are zeros.

5. Datasets and Metrics
The H36M Dataset [11]: This dataset provides synchro-

nized images of four views, ground truth 3D poses and cam-
era parameters. Following [11], we use a cross-subject eval-



Table 1. This table shows the 2D pose estimation accuracy on the
H36M dataset. “+MPII” means we train on “H36M+MPII”. We
show JDR (%) for six important joints due to space limitation.

Method Training
Dataset Shlder Elb Wri Hip Knee Ankle

Single H36M 88.50 88.94 85.72 90.37 94.04 90.11
Sum H36M 91.36 91.23 89.63 96.19 94.14 90.38
Max H36M 92.67 92.45 91.57 97.69 95.01 91.88
Ours H36M 95.58 95.83 95.01 99.36 97.96 94.75
Single +MPII 97.38 93.54 89.33 99.01 95.10 91.96
Ours +MPII 98.97 98.10 97.20 99.85 98.87 95.11

Table 2. This table shows the 3D pose estimation error MPJPE
(mm) on H36M when different datasets are used for training.
“+MPII” means we use a combined dataset “H36M+MPII” for
training. 3D poses are obtained by direct triangulation.

Method Training
Dataset Shlder Elb Wri Hip Knee Ankle

Single H36M 59.70 89.56 313.25 69.35 76.34 120.97
Ours H36M 42.97 49.83 70.65 24.28 34.42 52.13
Single +MPII 30.82 38.32 64.18 24.70 38.38 62.92
Ours +MPII 28.99 29.96 34.28 20.65 29.71 47.73

uation scheme where subjects 1, 5, 6, 7, 8 are used for train-
ing and 9, 11 for testing. We train a single fusion model
for all subjects because their camera parameters are similar.
In some experiments (which will be clearly stated), we also
use the MPII dataset [2] to augment the training data. Since
this dataset only has monocular images, we do not train the
fusion layer on these images.

The Total Capture Dataset [26]: we also evaluate our
approach on the Total Capture dataset to validate its gen-
eral applicability to other datasets. Following the previ-
ous work [26], the training set consists of “ROM1,2,3”,
“Walking1,3”, “Freestyle1,2”, “Acting1,2”, “Running1” on
subjects 1,2 and 3. The testing set consists of “Freestyle3
(FS3)”, “Acting3 (A3)” and “Walking2 (W2)” on subjects
1,2,3,4 and 5. We use the data of four cameras (1,3,5,7) in
experiments. We do not use the IMU sensors. We do not
use the MPII dataset for training in this experiment. The
hyper-parameters for training the network are kept the same
as those on the H36M dataset.

Metrics: The 2D pose estimation accuracy is measured
by Joint Detection Rate (JDR). If the distance between the
estimated and the groundtruth locations is smaller than a
threshold, we regard this joint as successfully detected. The
threshold is set to be half of the head size as in [2]. JDR is
the percentage of the successfully detected joints.

The 3D pose estimation accuracy is measured by Mean
Per Joint Position Error (MPJPE) between the groundtruth
3D pose y = [p31, · · · , p3M ] and the estimated 3D pose ȳ =

[p̄31, · · · , ¯p3M ]: MPJPE = 1
M

∑M
i=1 ‖p3i − p̄3i ‖2 We do not

align the estimated 3D poses to the ground truth. This is
referred to as protocol 1 in [15, 23]
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Figure 6. Sample heatmaps of our approach. “Detected heatmap”
denotes it is extracted from the image of the current view. “Warped
heatmap” is obtained by summing the heatmaps warped from the
other three views. We fuse the “warped heatmap” and the “de-
tected heatmap” to obtain the “fused heatmap”. For challeng-
ing images, the “detected heatmaps” may be incorrect. But the
“warped heatmaps” from other (easier) views are mostly correct.
Fusing the multi-view heatmaps improves the heatmap quality.

6. Experiments on 2D Pose Estimation

6.1. Implementation Details

We adopt the network proposed in [30] as our base net-
work and use ResNet-152 as its backbone, which was pre-
trained on the ImageNet classification dataset. The input
image size is 320 × 320 and the resolution of the heatmap
is 80 × 80. We use heatmaps as the regression targets and
enforce l2 loss on all views before and after feature fusion.
We train the network for 30 epochs. Other hyper-parameters
such as learning rate and decay strategy are kept the same
as in [30]. Using a more recent network structure [21] gen-
erates better 2D poses.

6.2. Quantitative Results

Table 1 shows the results on the most important joints
when we train, either only on the H36M dataset, or on a
combination of the H36M and MPII datasets. It compares
our approach with the baseline method [30], termed Single,
which does not perform cross view feature fusion. We also
compare with two baselines which compute sum or max
values over the epipolar line using the camera parameters.
The hyper parameters for training the two methods are kept
the same for fair comparison.

Our approach outperforms the baseline Single on all
body joints. The improvement is most significant for the
wrist joint, from 85.72% to 95.01%, and from 89.33% to



97.20%, when the model is trained only on “H36M” or on
“H36M + MPII”, respectively. We believe this is because
“wrist” is the most frequently occluded joint and cross view
fusion fuses the features of other (visible) views to help de-
tect them. See the third column of Figure 6 for an example.
The right wrist joint is occluded in the current view. So the
detected heatmap has poor quality. But fusing the features
with those of other views generates a better heatmap. In
addition, our approach outperforms the sum and max base-
lines. This is because the heatmaps are often noisy espe-
cially when occlusion occurs. Our method trains a fusion
network to handle noisy heatmaps so it is more robust than
getting sum/max values along epipolar lines.

It is also interesting to see that when we only use the
H36M dataset for training, the Single baseline achieves very
poor performance. We believe this is because the limited
appearance variation in the training set affects the general-
ization power of the learned model. However, our fusion
approach suffers less from the lack of training data. This is
probably because the fusion approach requires the features
extracted from different views to be consistent following a
geometric transformation, which is a strong prior to reduce
the risk of over-fitting to the training datasets with limited
appearance variation.

The improved 2D pose estimations in turn help signif-
icantly reduce the error in 3D. We estimate 3D poses by
direct triangulation in this experiment. Table 2 shows the
3D estimation errors on the six important joints. The er-
ror for the wrist joint (which gets the largest improvement
in 2D estimation) decreases significantly from 64.18mm to
34.28mm. The improvement on the ankle joint is also as
large as 15mm. The mean per joint position error over all
joints (see (c) and (g) in Table 3) decreases from 36.28mm
to 27.90mm when we do not align the estimated 3D pose to
the ground truth.

6.3. Qualitative Results

In addition to the above numerical results, we also qual-
itatively investigate in what circumstance our approach will
improve the 2D pose estimations over the baseline. Figure
6 shows four examples. First, in the fourth example (col-
umn), the detected heatmap shows strong responses at both
left and right elbows because it is hard to differentiate them
for this image. From the ground truth heatmap (the sec-
ond row) we can see that the left elbow is the target. The
heatmap warped from other views (fifth row) correctly lo-
calizes the left joint. Fusing the two heatmaps gives better
localization accuracy. Second, the third column of Figure
6 shows the heatmap of the right wrist joint. Because the
joint is occluded by the human body, the detected heatmap
is not correct. But the heatmaps warped from the other three
views are correct because it is not occluded there.

7. Experiments on 3D Pose Estimation
7.1. Implementation Details

In the first iteration of RPSM (t = 0), we divide the
space of size 2, 000mm around the estimated location of the
root joint into 163 bins, and estimate a coarse 3D pose by
solving Eq. 2. We also tried to use a larger number of bins,
but the computation time becomes intractable.

For the following iterations where t ≥ 1, we divide the
space, which is of size st = 2000

16×2(t−1) , around each es-
timated joint location into 2 × 2 × 2 bins. Note that the
space size st of each joint equals to the size of a single
bin in the previous iteration. We use a smaller number of
bins here than that of the first iteration, because it can sig-
nificantly reduce the time for on-the-fly computation of the
pairwise potentials. In our experiments, repeating the above
process for ten iterations only takes about 0.4 seconds. This
is very light weight compared to the first iteration which
takes about 8 seconds.

7.2. Quantitative Results

We design eight configurations to investigate different
factors of our approach. Table 3 shows how different fac-
tors of our approach decreases the error from 94.54mm to
26.21mm.

RPSM vs. Triangulation: First, RPSM achieves signif-
icantly smaller 3D errors than Triangulation when 2D pose
estimations are obtained by a relatively weak model. For
instance, by comparing the methods (a) and (b) in Table 3,
we can see that, given the same 2D poses, RPSM signifi-
cantly decreases the error, i.e. from 94.54mm to 47.82mm.
This is attributed to the joint optimization of all nodes and
the recursive pose refinement.

Second, RPSM provides marginal improvement when
2D pose estimations are already very accurate. For ex-
ample, by comparing the methods (g) and (h) in Table 3
where the 2D poses are estimated by our model trained on
the combined dataset (“H36M+MPII”), we can see the er-
ror decreases slightly from 27.90mm to 26.21mm. This is
because the input 2D poses are already very accurate and
direct triangulation gives reasonably good 3D estimations.
But if we focus on some difficult actions such as “sitting”,
which gets the largest error among all actions, the improve-
ment resulted from our RPSM approach is still very signifi-
cant (from 40.47mm to 32.12mm).

In summary, compared to triangulation, RPSM obtains
comparable results when the 2D poses are accurate, and sig-
nificantly better results when the 2D poses are inaccurate
which is often the case in practice.

RPSM vs. PSM: We investigate the effect of the recur-
sive 3D pose refinement. Table 4 shows the results. First,
the poses estimated by PSM, i.e. RPSM with t = 0, have
large errors resulted from coarse space discretization. Sec-



Table 3. 3D pose estimation errors MPJPE (mm) of different methods on the H36M dataset. The naming convention of the methods
follows the rule of “A-B-C” where “A” indicates whether we use fusion in 2D pose estimation. “Single” means the cross view fusion is not
used. “B” denotes the training datasets. “H36M” means we only use the H36M dataset and “+MPII” means we combine H36M with MPII
for training. “C” represents the method for estimating 3D poses.

Direction Discus Eating Greet Phone Photo Posing Purch

(a) Single-H36M-Triangulate 71.76 65.89 56.63 136.52 59.32 96.30 46.67 110.51
(b) Single-H36M-RPSM 33.38 36.36 27.13 31.14 31.06 30.28 28.59 41.03
(c) Single-“+MPII”-Triangulate 33.99 32.87 25.80 29.02 34.63 26.64 28.42 42.63
(d) Single-“+MPII”-RPSM 26.89 28.05 23.13 25.75 26.07 23.45 24.41 34.02
(e) Fusion-H36M-Triangulate 34.84 35.78 32.70 33.49 34.44 38.19 29.66 60.72
(f) Fusion-H36M-RPSM 28.89 32.46 26.58 28.14 28.31 29.34 28.00 36.77
(g) Fusion-“+MPII”-Triangulate 25.15 27.85 24.25 25.45 26.16 23.70 25.68 29.66
(h) Fusion-“+MPII”-RPSM 23.98 26.71 23.19 24.30 24.77 22.82 24.12 28.62

Sitting SittingD Smoke Wait WalkD Walking WalkT Average

(a) Single-H36M-Triangulate 150.10 57.01 73.15 292.78 49.00 48.67 62.62 94.54
(b) Single-H36M-RPSM 245.52 33.74 37.10 35.97 29.92 35.23 30.55 47.82
(c) Single-“+MPII”-Triangulate 88.69 36.38 35.48 31.98 27.43 32.42 27.53 36.28
(d) Single-“+MPII”-RPSM 39.63 29.26 29.49 27.25 25.07 27.82 24.85 27.99
(e) Fusion-H36M-Triangulate 53.10 35.18 40.97 41.57 31.86 31.38 34.58 38.29
(f) Fusion-H36M-RPSM 41.98 30.54 35.59 30.03 28.33 30.01 30.46 31.17
(g) Fusion-“+MPII”-Triangulate 40.47 28.60 32.77 26.83 26.00 28.56 25.01 27.90
(h) Fusion-“+MPII”-RPSM 32.12 26.87 30.98 25.56 25.02 28.07 24.37 26.21

Table 4. 3D pose estimation errors when different numbers of
iterations t are used in RPSM. When t = 0, RPSM is equiv-
alent to PSM. “+MPII” means we use the combined dataset
“H36M+MPII” to train the 2D pose estimation model. The MPJPE
(mm) are computed when no rigid alignment is performed be-
tween the estimated pose and the ground truth.

Methods t = 0? t = 1 t = 3 t = 5 t = 10

Single-H36M-RPSM 95.23 77.95 51.78 47.93 47.82
Single-“+MPII”-RPSM 78.67 58.94 32.39 28.04 27.99
Fusion-H36M-RPSM 80.77 61.11 35.75 31.25 31.17
Fusion-“+MPII”-RPSM 77.28 57.22 30.76 26.26 26.21

ond, RPSM consistently decreases the error as t grows and
eventually converges. For instance, in the first row of Ta-
ble 4, RPSM decreases the error of PSM from 95.23mm to
47.82mm which validates the effectiveness of the recursive
3D pose refinement of RPSM.

Single vs. Fusion: We now investigate the effect of the
cross-view feature fusion on 3D pose estimation accuracy.
Table 3 shows the results. First, when we use H36M+MPII
datasets (termed as “+MPII”) for training and use triangula-
tion to estimate 3D poses, the average 3D pose error of our
fusion model (g) is smaller than the baseline without fu-
sion (c). The improvement is most significant for the most
challenging “Sitting” action whose error decreases from
88.69mm to 40.47mm. The improvement should be at-
tributed to the better 2D poses resulted from cross-view fea-
ture fusion. We observe consistent improvement for other
different setups. For example, compare the methods (a) and
(e), or the methods (b) and (f).

Table 5. Comparison of the 3D pose estimation errors MPJPE
(mm) of the state of the art multiple view pose estimators on the
H36M datasets. We do NOT use the Procrustes algorithm to align
the estimations to the ground truth. The result of “Multi-view Mar-
tinez” is reported in [23]. The four state-of-the-arts do not use
MPII dataset for training. So they are directly comparable to our
result of 31.17mm.

Methods Average MPJPE

PVH-TSP [26] 87.3mm
Multi-View Martinez [15] 57.0mm

Pavlakos et al. [17] 56.9mm
Tome et al. [23] 52.8mm
Our approach 31.17mm

Our approach + MPII 26.21mm

Comparison to the State-of-the-arts: We also compare
our approach to the state-of-the-art methods for multi-view
human pose estimation in Table 5. Our approach outper-
forms the state-of-the-arts by a large margin. First, when we
train our approach only on the H36M dataset, the MPJPE
error is 31.17mm which is already much smaller than the
previous state-of-the-art [23] whose error is 52.80mm. As
discussed in the above sections, the improvement should be
attributed to the more accurate 2D poses and the recursive
refinement of the 3D poses. If we add the MPII dataset
for training the 2D poses, the error further decreases to
26.21mm due to the enhanced generalization power intro-
duced by the additional dataset.



(a)   20mm

(b)  40mm

(c) 120mm

Figure 7. We project the estimated 3D poses back to the 2D image
space and draw the skeletons on the images. Each row shows the
skeletons of four camera views. We select three typical examples
whose 3D MPJPE errors are 20, 40, 120mm, respectively.

7.3. Qualitative Results

Since it is difficult to demonstrate a 3D pose from all pos-
sible view points, we propose to visualize it by projecting it
back to the four camera views using the camera parameters
and draw the skeletons on the images. Figure 7 shows three
estimation examples. According to the 3D geometry, if the
2D projections of a 3D joint are accurate for more than two
views (including two), the 3D joint estimation is accurate.
For instance, in the first example (first row of Figure 7), the
2D locations of the right hand joint in the first and fourth
camera view are accurate. Based on this, we can infer with
high confidence that the estimated 3D location of the right
hand joint is accurate.

In the first example (row), although the right hand joint is
occluded by the human body in the second view (column),
our approach still accurately recovers its 3D location due to
the cross view feature fusion. Actually, most leg joints are
also occluded in the first and third views but the correspond-
ing 3D joints are estimated correctly.

The second example gets a larger error of 40mm because
the left hand joint is not accurately detected. This is because
the joint is occluded in too many (three) views but only vis-
ible in a single view. Cross-view feature fusion contributes
little in this case. For most of the testing images, the 3D
MPJPE errors are between 20mm to 40mm.

There are few cases (about 0.05%) where the error is as
large as 120mm. This is usually when “double counting”
happens. We visualize one such example in the last row of
Figure 7. Because this particular pose of the right leg was
rarely seen during training, the detections of the right leg
joints fall on the left leg regions consistently for all views.
In this case, the warped heatmaps corresponding to the right
leg joints will also fall on the left leg regions thus cannot
drag the right leg joints to the correct positions.

Table 6. 3D pose estimation errors MPJPE (mm) of different
methods on the Total Capture dataset. The numbers reported for
our method and the baselines are obtained without rigid alignment.

Methods Subjects1,2,3 Subjects4,5 Mean
W2 FS3 A3 W2 FS3 A3

Tri-CPM [29] 79 112 106 79 149 73 99
PVH [26] 48 122 94 84 168 154 107
IMUPVH [26] 30 91 49 36 112 10 70
AutoEnc [25] 13 49 24 22 71 40 35
Single-RPSM 28 42 30 45 74 46 41
Fusion-RPSM 19 28 21 32 54 33 29

7.4. Generalization to the Total Capture Dataset

We conduct experiments on the Total Capture dataset
to validate the general applicability of our approach. Our
model is trained only on the Total Capture dataset. Table
6 shows the results. “Single-RPSM” means we do NOT
perform cross-view feature fusion and use RPSM for re-
covering 3D poses. First, our approach decreases the er-
ror of the previous best model [25] by about 17%. Second,
the improvement is larger for the hard cases such as “FS3”.
The results are consistent with those on the H36M dataset.
Third, by comparing the approaches of “Single-RPSM” and
“Fusion-RPSM”, we can see that fusing the features of dif-
ferent views improves the final 3D estimation accuracy sig-
nificantly. In particular, the improvement is consistent for
all different subsets.

7.5. Generalization to New Camera Setups

We conduct experiments on the H36M dataset using NO
pose annotations. The single view pose estimator [30] is
trained on the MPII dataset. If we directly apply this model
to the test set of H36M and estimate the 3D pose by RPSM,
the MPJPE error is about 109mm. If we retrain this model
(without the fusion layer) using the harvested pseudo labels,
the error decreases to 61mm. If we train our fusion model
with the pseudo labels described above, the error decreases
to 43mm which is already smaller than the previous super-
vised state-of-the-arts. The experimental results validate the
feasibility of applying our model to new environments with-
out any manual label.

8. Conclusion

We propose an approach to estimate 3D human poses
from multiple calibrated cameras. The first contribution is a
CNN based multi-view feature fusion approach which sig-
nificantly improves the 2D pose estimation accuracy. The
second contribution is a recursive pictorial structure model
to estimate 3D poses from the multi-view 2D poses. It im-
proves over the PSM by a large margin. The two contribu-
tions are independent and each can be combined with the
existing methods.
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