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ABSTRACT
Collaborative filtering (CF) is a successful approach com-
monly used by many recommender systems. Conventional
CF-based methods use the ratings given to items by users
as the sole source of information for learning to make rec-
ommendation. However, the ratings are often very sparse in
many applications, causing CF-based methods to degrade
significantly in their recommendation performance. To ad-
dress this sparsity problem, auxiliary information such as
item content information may be utilized. Collaborative
topic regression (CTR) is an appealing recent method taking
this approach which tightly couples the two components that
learn from two different sources of information. Neverthe-
less, the latent representation learned by CTR may not be
very effective when the auxiliary information is very sparse.
To address this problem, we generalize recent advances in
deep learning from i.i.d. input to non-i.i.d. (CF-based) in-
put and propose in this paper a hierarchical Bayesian model
called collaborative deep learning (CDL), which jointly per-
forms deep representation learning for the content informa-
tion and collaborative filtering for the ratings (feedback)
matrix. Extensive experiments on three real-world datasets
from different domains show that CDL can significantly ad-
vance the state of the art.

Categories and Subject Descriptors
H.1.0 [Information Systems]: Models and Principles—
General ; J.4 [Computer Applications]: Social and Be-
havioral Sciences
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1. INTRODUCTION
Due to the abundance of choice in many online services,

recommender systems (RS) now play an increasingly signif-
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icant role [40]. For individuals, using RS allows us to make
more effective use of information. Besides, many compa-
nies (e.g., Amazon and Netflix) have been using RS exten-
sively to target their customers by recommending products
or services. Existing methods for RS can roughly be cate-
gorized into three classes [6]: content-based methods, col-
laborative filtering (CF) based methods, and hybrid meth-
ods. Content-based methods [17] make use of user profiles or
product descriptions for recommendation. CF-based meth-
ods [23, 27] use the past activities or preferences, such as
user ratings on items, without using user or product content
information. Hybrid methods [1, 18, 12] seek to get the best
of both worlds by combining content-based and CF-based
methods.

Because of privacy concerns, it is generally more difficult
to collect user profiles than past activities. Nevertheless,
CF-based methods do have their limitations. The predic-
tion accuracy often drops significantly when the ratings are
very sparse. Moreover, they cannot be used for recommend-
ing new products which have yet to receive rating informa-
tion from users. Consequently, it is inevitable for CF-based
methods to exploit auxiliary information and hence hybrid
methods have gained popularity in recent years.

According to whether two-way interaction exists between
the rating information and auxiliary information, we may
further divide hybrid methods into two sub-categories: loosely
coupled and tightly coupled methods. Loosely coupled meth-
ods like [29] process the auxiliary information once and then
use it to provide features for the CF models. Since informa-
tion flow is one-way, the rating information cannot provide
feedback to guide the extraction of useful features. For this
sub-category, improvement often has to rely on a manual
and tedious feature engineering process. On the contrary,
tightly coupled methods like [34] allow two-way interaction.
On one hand, the rating information can guide the learn-
ing of features. On the other hand, the extracted features
can further improve the predictive power of the CF models
(e.g., based on matrix factorization of the sparse rating ma-
trix). With two-way interaction, tightly coupled methods
can automatically learn features from the auxiliary informa-
tion and naturally balance the influence of the rating and
auxiliary information. This is why tightly coupled methods
often outperform loosely coupled ones [35].

Collaborative topic regression (CTR) [34] is a recently
proposed tightly coupled method. It is a probabilistic graph-
ical model that seamlessly integrates a topic model, latent
Dirichlet allocation (LDA) [5], and a model-based CF method,
probabilistic matrix factorization (PMF) [27]. CTR is an



appealing method in that it produces promising and in-
terpretable results. Nevertheless, the latent representation
learned is often not effective enough especially when the aux-
iliary information is very sparse. It is this representation
learning problem that we will focus on in this paper.

On the other hand, deep learning models recently show
great potential for learning effective representations and de-
liver state-of-the-art performance in computer vision [38]
and natural language processing [15, 26] applications. In
deep learning models, features are learned in a supervised
or unsupervised manner. Although they are more appealing
than shallow models in that the features can be learned au-
tomatically (e.g., effective feature representation is learned
from text content), they are inferior to shallow models such
as CF in capturing and learning the similarity and implicit
relationship between items. This calls for integrating deep
learning with CF by performing deep learning collabora-
tively.

Unfortunately, very few attempts have been made to de-
velop deep learning models for CF. [28] uses restricted Boltz-
mann machines instead of the conventional matrix factor-
ization formulation to perform CF and [9] extends this work
by incorporating user-user and item-item correlations. Al-
though these methods involve both deep learning and CF,
they actually belong to CF-based methods because they do
not incorporate content information like CTR, which is cru-
cial for accurate recommendation. [24] uses low-rank matrix
factorization in the last weight layer of a deep network to sig-
nificantly reduce the number of model parameters and speed
up training, but it is for classification instead of recommen-
dation tasks. On music recommendation, [21, 39] directly
use conventional CNN or deep belief networks (DBN) to as-
sist representation learning for content information, but the
deep learning components of their models are deterministic
without modeling the noise and hence they are less robust.
The models achieve performance boost mainly by loosely
coupled methods without exploiting the interaction between
content information and ratings. Besides, the CNN is linked
directly to the rating matrix, which means the models will
perform poorly when the ratings are sparse, as shown in the
following experiments.

To address the challenges above, we develop a hierarchical
Bayesian model called collaborative deep learning (CDL) as
a novel tightly coupled method for RS. We first present a
Bayesian formulation of a deep learning model called stacked
denoising autoencoder (SDAE) [32]. With this, we then
present our CDL model which tightly couples deep represen-
tation learning for the content information and collaborative
filtering for the ratings (feedback) matrix, allowing two-way
interaction between the two. Experiments show that CDL
significantly outperforms the state of the art. Note that al-
though we present CDL as using SDAE for its feature learn-
ing component, CDL is actually a more general framework
which can also admit other deep learning models such as
deep Boltzmann machines [25], recurrent neural networks
[10], and convolutional neural networks [16].

The main contribution of this paper is summarized below:
• By performing deep learning collaboratively, CDL can

simultaneously extract an effective deep feature repre-
sentation from content and capture the similarity and
implicit relationship between items (and users). The
learned representation may also be used for tasks other
than recommendation.

• Unlike previous deep learning models which use simple
target like classification [15] and reconstruction [32],
we propose to use CF as a more complex target in a
probabilistic framework.
• Besides the algorithm for attaining maximum a poste-

riori (MAP) estimates, we also derive a sampling-based
algorithm for the Bayesian treatment of CDL, which,
interestingly, turns out to be a Bayesian generalized
version of back-propagation.
• To the best of our knowledge, CDL is the first hierar-

chical Bayesian model to bridge the gap between state-
of-the-art deep learning models and RS. Besides, due
to its Bayesian nature, CDL can be easily extended
to incorporate other auxiliary information to further
boost the performance.
• Extensive experiments on three real-world datasets from

different domains show that CDL can significantly ad-
vance the state of the art.

2. NOTATION AND PROBLEM FORMULA-
TION

Similar to the work in [34], the recommendation task con-
sidered in this paper takes implicit feedback [13] as the train-
ing and test data. The entire collection of J items (articles
or movies) is represented by a J-by-S matrix Xc, where row
j is the bag-of-words vector Xc,j∗ for item j based on a vo-
cabulary of size S. With I users, we define an I-by-J binary
rating matrix R = [Rij ]I×J . For example, in the dataset
citeulike-a Rij = 1 if user i has article j in his or her per-
sonal library and Rij = 0 otherwise. Given part of the rat-
ings in R and the content information Xc, the problem is to
predict the other ratings in R. Note that although we focus
on movie recommendation (where plots of movies are con-
sidered as content information) and article recommendation
like [34] in this paper, our model is general enough to handle
other recommendation tasks (e.g., tag recommendation).

The matrix Xc plays the role of clean input to the SDAE
while the noise-corrupted matrix, also a J-by-S matrix, is
denoted by X0. The output of layer l of the SDAE is de-
noted by Xl which is a J-by-Kl matrix. Similar to Xc, row
j of Xl is denoted by Xl,j∗. Wl and bl are the weight ma-
trix and bias vector, respectively, of layer l, Wl,∗n denotes
column n of Wl, and L is the number of layers. For conve-
nience, we use W+ to denote the collection of all layers of
weight matrices and biases. Note that an L/2-layer SDAE
corresponds to an L-layer network.

3. COLLABORATIVE DEEP LEARNING
We are now ready to present details of our CDL model.

We first briefly review SDAE and give a Bayesian formula-
tion of SDAE. This is then followed by the presentation of
CDL as a hierarchical Bayesian model which tightly inte-
grates the ratings and content information.

3.1 Stacked Denoising Autoencoders
SDAE [32] is a feedforward neural network for learning

representations (encoding) of the input data by learning to
predict the clean input itself in the output, as shown in
Figure 2. Usually the hidden layer in the middle, i.e., X2 in
the figure, is constrained to be a bottleneck and the input
layer X0 is a corrupted version of the clean input data. An
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Figure 1: On the left is the graphical model of CDL. The part inside the dashed rectangle represents an
SDAE. An example SDAE with L = 2 is shown. On the right is the graphical model of the degenerated CDL.
The part inside the dashed rectangle represents the encoder of an SDAE. An example SDAE with L = 2 is
shown on the right of it. Note that although L is still 2, the decoder of the SDAE vanishes. To prevent
clutter, we omit all variables xl except x0 and xL/2 in the graphical models.
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Figure 2: A 2-layer SDAE with L = 4.

SDAE solves the following optimization problem:

min
{Wl},{bl}

‖Xc −XL‖2F + λ
∑
l

‖Wl‖2F ,

where λ is a regularization parameter and ‖ · ‖F denotes the
Frobenius norm.

3.2 Generalized Bayesian SDAE
If we assume that both the clean input Xc and the cor-

rupted input X0 are observed, similar to [4, 19, 3, 7], we can
define the following generative process:

1. For each layer l of the SDAE network,

(a) For each column n of the weight matrix Wl, draw

Wl,∗n ∼ N (0, λ−1
w IKl).

(b) Draw the bias vector bl ∼ N (0, λ−1
w IKl).

(c) For each row j of Xl, draw

Xl,j∗ ∼ N (σ(Xl−1,j∗Wl + bl), λ
−1
s IKl). (1)

2. For each item j, draw a clean input 1

Xc,j∗ ∼ N (XL,j∗, λ
−1
n IJ).

Note that if λs goes to infinity, the Gaussian distribution
in Equation (1) will become a Dirac delta distribution [31]
centered at σ(Xl−1,j∗Wl + bl), where σ(·) is the sigmoid
function. The model will degenerate to be a Bayesian for-
mulation of SDAE. That is why we call it generalized SDAE.

Note that the first L/2 layers of the network act as an en-
coder and the last L/2 layers act as a decoder. Maximization

1Note that while generation of the clean input Xc from XL

is part of the generative process of the Bayesian SDAE, gen-
eration of the noise-corrupted input X0 from Xc is an arti-
ficial noise injection process to help the SDAE learn a more
robust feature representation.

of the posterior probability is equivalent to minimization of
the reconstruction error with weight decay taken into con-
sideration.

3.3 Collaborative Deep Learning
Using the Bayesian SDAE as a component, the generative

process of CDL is defined as follows:

1. For each layer l of the SDAE network,

(a) For each column n of the weight matrix Wl, draw

Wl,∗n ∼ N (0, λ−1
w IKl).

(b) Draw the bias vector bl ∼ N (0, λ−1
w IKl).

(c) For each row j of Xl, draw

Xl,j∗ ∼ N (σ(Xl−1,j∗Wl + bl), λ
−1
s IKl).

2. For each item j,

(a) Draw a clean input Xc,j∗ ∼ N (XL,j∗, λ
−1
n IJ).

(b) Draw a latent item offset vector εj ∼ N (0, λ−1
v IK)

and then set the latent item vector to be:

vj = εj + XT
L
2
,j∗.

3. Draw a latent user vector for each user i:

ui ∼ N (0, λ−1
u IK).

4. Draw a rating Rij for each user-item pair (i, j):

Rij ∼ N (uT
i vj ,C

−1
ij ).

Here λw, λn, λu, λs, and λv are hyperparameters and Cij is
a confidence parameter similar to that for CTR (Cij = a if
Rij = 1 and Cij = b otherwise). Note that the middle layer
XL/2 serves as a bridge between the ratings and content in-
formation. This middle layer, along with the latent offset εj ,
is the key that enables CDL to simultaneously learn an ef-
fective feature representation and capture the similarity and
(implicit) relationship between items (and users). Similar to
the generalized SDAE, for computational efficiency, we can
also take λs to infinity.

The graphical model of CDL when λs approaches positive
infinity is shown in Figure 1, where, for notational simplicity,
we use x0, xL/2, and xL in place of XT

0,j∗, XT
L
2
,j∗, and XT

L,j∗,

respectively.
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3.4 Maximum A Posteriori Estimates
Based on the CDL model above, all parameters could be

treated as random variables so that fully Bayesian methods
such as Markov chain Monte Carlo (MCMC) or variational
approximation methods [14] may be applied. However, such
treatment typically incurs high computational cost. Besides,
since CTR is our primary baseline for comparison, it would
be fair and reasonable to take an approach analogous to that
used in CTR. Consequently, we devise below an EM-style
algorithm for obtaining the MAP estimates, as in [34].

Like in CTR, maximizing the posterior probability is equiv-
alent to maximizing the joint log-likelihood of U, V, {Xl},
Xc, {Wl}, {bl}, and R given λu, λv, λw, λs, and λn:

L =− λu

2

∑
i

‖ui‖22 −
λw

2

∑
l

(‖Wl‖2F + ‖bl‖22)

− λv

2

∑
j

‖vj −XT
L
2
,j∗‖

2
2 −

λn

2

∑
j

‖XL,j∗ −Xc,j∗‖22

− λs

2

∑
l

∑
j

‖σ(Xl−1,j∗Wl + bl)−Xl,j∗‖22

−
∑
i,j

Cij

2
(Rij − uT

i vj)
2.

If λs goes to infinity, the likelihood becomes:

L =− λu

2

∑
i

‖ui‖22 −
λw

2

∑
l

(‖Wl‖2F + ‖bl‖22)

− λv

2

∑
j

‖vj − fe(X0,j∗,W
+)T ‖22

− λn

2

∑
j

‖fr(X0,j∗,W
+)−Xc,j∗‖22

−
∑
i,j

Cij

2
(Rij − uT

i vj)
2, (2)

where the encoder function fe(·,W+) takes the corrupted
content vector X0,j∗ of item j as input and computes the
encoding of the item, and the function fr(·,W+) also takes
X0,j∗ as input, computes the encoding and then the recon-
structed content vector of item j. For example, if the num-
ber of layers L = 6, fe(X0,j∗,W

+) is the output of the third
layer while fr(X0,j∗,W

+) is the output of the sixth layer.
From the perspective of optimization, the third term in

the objective function (2) above is equivalent to a multi-layer
perceptron using the latent item vectors vj as target while

the fourth term is equivalent to an SDAE minimizing the re-
construction error. Seeing from the view of neural networks
(NN), when λs approaches positive infinity, training of the
probabilistic graphical model of CDL in Figure 1(left) would
degenerate to simultaneously training two neural networks
overlaid together with a common input layer (the corrupted
input) but different output layers, as shown in Figure 3.
Note that the second network is much more complex than
typical neural networks due to the involvement of the rating
matrix.

When the ratio λn/λv approaches positive infinity, it will
degenerate to a two-step model in which the latent repre-
sentation learned using SDAE is put directly into the CTR.
Another extreme happens when λn/λv goes to zero where
the decoder of the SDAE essentially vanishes. On the right
of Figure 1 is the graphical model of the degenerated CDL
when λn/λv goes to zero. As demonstrated in the experi-
ments, the predictive performance will suffer greatly for both
extreme cases.

For ui and vj , coordinate ascent similar to [34, 13] is used.
Given the current W+, we compute the gradients of L with
respect to ui and vj and set them to zero, leading to the
following update rules:

ui ← (VCiV
T + λuIK)−1VCiRi

vj ← (UCiU
T + λvIK)−1(UCjRj + λvfe(X0,j∗,W

+)T ),

where U = (ui)
I
i=1, V = (vj)

J
j=1, Ci = diag(Ci1, . . . ,CiJ)

is a diagonal matrix, Ri = (Ri1, . . . ,RiJ)T is a column vec-
tor containing all the ratings of user i, and Cij reflects the
confidence controlled by a and b as discussed in [13].

Given U and V, we can learn the weights Wl and biases
bl for each layer using the back-propagation learning algo-
rithm. The gradients of the likelihood with respect to Wl

and bl are as follows:

∇WlL = −λwWl

− λv

∑
j

∇Wlfe(X0,j∗,W
+)T (fe(X0,j∗,W

+)T − vj)

− λn

∑
j

∇Wlfr(X0,j∗,W
+)(fr(X0,j∗,W

+)−Xc,j∗)

∇blL = −λwbl

− λv

∑
j

∇blfe(X0,j∗,W
+)T (fe(X0,j∗,W

+)T − vj)

− λn

∑
j

∇blfr(X0,j∗,W
+)(fr(X0,j∗,W

+)−Xc,j∗).

By alternating the update of U, V, Wl, and bl, we can find
a local optimum for L . Several commonly used techniques
such as using a momentum term may be used to alleviate the
local optimum problem. For completeness, we also provide
a sampling- based algorithm for CDL in the appendix.

3.5 Prediction
LetD be the observed test data. Similar to [34], we use the

point estimates of ui, W+ and εj to calculate the predicted
rating:

E[Rij |D] ≈ E[ui|D]T (E[fe(X0,j∗,W
+)T |D] + E[εj |D]),

where E[·] denotes the expectation operation. In other words,



we approximate the predicted rating as:

R∗ij ≈ (u∗j )T (fe(X0,j∗,W
+∗)T + ε∗j ) = (u∗i )Tv∗j .

Note that for any new item j with no rating in the training
data, its offset ε∗j will be 0.

4. EXPERIMENTS
Extensive experiments are conducted on three real-world

datasets from different domains to demonstrate the effective-
ness of our model both quantitatively and qualitatively2.

4.1 Datasets
We use three datasets from different real-world domains,

two from CiteULike3 and one from Netflix, for our experi-
ments. The first two datasets, from [35], were collected in
different ways, specifically, with different scales and different
degrees of sparsity to mimic different practical situations.
The first dataset, citeulike-a, is mostly from [34]. The sec-
ond dataset, citeulike-t, was collected independently of the
first one. They manually selected 273 seed tags and collected
all the articles with at least one of those tags. Similar to [34],
users with fewer than 3 articles are not included. As a re-
sult, citeulike-a contains 5551 users and 16980 items. For
citeulike-t , the numbers are 7947 and 25975. We can see that
citeulike-t contains more users and items than citeulike-a.
Also, citeulike-t is much sparser as only 0.07% of its user-
item matrix entries contain ratings but citeulike-a has rat-
ings in 0.22% of its user-item matrix entries.

The last dataset, Netflix, consists of two parts. The first
part, with ratings and movie titles, is from the Netflix chal-
lenge dataset. The second part, with plots of the corre-
sponding movies, was collected by us from IMDB 4. Similar
to [41], in order to be consistent with the implicit feedback
setting of the first two datasets, we extract only positive rat-
ings (rating 5) for training and testing. After removing users
with less than 3 positive ratings and movies without plots,
we have 407261 users, 9228 movies, and 15348808 ratings in
the final dataset.

We follow the same procedure as that in [34] to preprocess
the text information (item content) extracted from the ti-
tles and abstracts of the articles and the plots of the movies.
After removing stop words, the top S discriminative words
according to the tf-idf values are chosen to form the vocab-
ulary (S is 8000, 20000, and 20000 for the three datasets).

4.2 Evaluation Scheme
For each dataset, similar to [35, 36], we randomly select

P items associated with each user to form the training set
and use all the rest of the dataset as the test set. To eval-
uate and compare the models under both sparse and dense
settings, we set P to 1 and 10, respectively, in our experi-
ments. For each value of P , we repeat the evaluation five
times with different randomly selected training sets and the
average performance is reported.

As in [34, 22, 35], we use recall as the performance measure
because the rating information is in the form of implicit

2Code and data are available at www.wanghao.in
3CiteULike allows users to create their own collections of
articles. There are abstract, title, and tags for each arti-
cle. More details about the CiteULike data can be found at
http://www.citeulike.org.
4http://www.imdb.com

feedback [13, 23]. Specifically, a zero entry may be due to
the fact that the user is not interested in the item, or that the
user is not aware of its existence. As such, precision is not
a suitable performance measure. Like most recommender
systems, we sort the predicted ratings of the candidate items
and recommend the top M items to the target user. The
recall@M for each user is then defined as:

recall@M =
number of items that the user likes among the top M

total number of items that the user likes
.

The final result reported is the average recall over all users.
Another evaluation metric is the mean average precision

(mAP). Exactly the same as [21], we set the cutoff point at
500 for each user.

4.3 Baselines and Experimental Settings
The models included in our comparison are listed as fol-

lows:
• CMF: Collective Matrix Factorization [30] is a model

incorporating different sources of information by simul-
taneously factorizing multiple matrices. In this paper,
the two factorized matrices are R and Xc.
• SVDFeature: SVDFeature [8] is a model for feature-

based collaborative filtering. In this paper we use the
content information Xc as raw features to feed into
SVDFeature.
• DeepMusic: DeepMusic [21] is a model for music rec-

ommendation mentioned in Section 1. We use the vari-
ant, a loosely coupled method, that achieves the best
performance as our baseline.
• CTR: Collaborative Topic Regression [34] is a model

performing topic modeling and collaborative filtering
simultaneously as mentioned in the previous section.
• CDL: Collaborative Deep Learning is our proposed

model as described above. It allows different levels of
model complexity by varying the number of layers.

In the experiments, we first use a validation set to find
the optimal hyperparameters for CMF, SVDFeature, CTR,
and DeepMusic. For CMF, we set the regularization hyper-
parameters for the latent factors of different contexts to 10.
After the grid search, we find that CMF performs best when
the weights for the rating matrix and content matrix (BOW)
are both 5 in the sparse setting. For the dense setting the
weights are 8 and 2, respectively. For SVDFeature, the best
performance is achieved when the regularization hyperpa-
rameters for the users and items are both 0.004 with the
learning rate equal to 0.005. For DeepMusic, we find that
the best performance is achieved using a CNN with two con-
volutional layers. We also try our best to tune the other hy-
perparameters. For CTR, we find that it can achieve good
prediction performance when λu = 0.1, λv = 10, a = 1,
b = 0.01, and K = 50 (note that a and b determine the con-
fidence parameters Cij). For CDL, we directly set a = 1,
b = 0.01, K = 50 and perform grid search on the hyperpa-
rameters λu, λv, λn, and λw. For the grid search, we split
the training data and use 5-fold cross validation.

We use a masking noise with a noise level of 0.3 to get the
corrupted input X0 from the clean input Xc. For CDL with
more than one layer of SDAE (L > 2), we use a dropout rate
[2, 33, 11] of 0.1 to achieve adaptive regularization. In terms
of network architecture, the number of hidden units Kl is set
to 200 for l such that l 6= L/2 and 0 < l < L. While both K0

and KL are equal to the number of words S in the dictionary,
KL/2 is set to K which is the number of dimensions of the
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Figure 4: Performance comparison of CDL, CTR, DeepMusic, CMF, and SVDFeature based on recall@M
for datasets citeulike-a, citeulike-t, and Netflix in the sparse setting. A 2-layer CDL is used.
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Figure 5: Performance comparison of CDL, CTR, DeepMusic, CMF, and SVDFeature based on recall@M
for datasets citeulike-a, citeulike-t, and Netflix in the dense setting. A 2-layer CDL is used.

Table 1: mAP for three datasets

citeulike-a citeulike-t Netflix
CDL 0.0514 0.0453 0.0312
CTR 0.0236 0.0175 0.0223
DeepMusic 0.0159 0.0118 0.0167
CMF 0.0164 0.0104 0.0158
SVDFeature 0.0152 0.0103 0.0187

learned representation. For example, the 2-layer CDL model
(L = 4) has a Bayesian SDAE of architecture ‘8000-200-50-
200-8000’ for the citeulike-a dataset.

4.4 Quantitative Comparison
Figures 4 and 5 show the results that compare CDL, CTR,

DeepMusic, CMF, and SVDFeature using the three datasets
under both the sparse (P = 1) and dense (P = 10) set-
tings. We can see that CTR is a strong baseline which
beats DeepMusic, CMF, and SVDFeature in all datasets
even though DeepMusic has a deep architecture. In the
sparse setting, CMF outperforms SVDFeature most of the
time and sometimes even achieves performance compara-
ble to CTR. DeepMusic performs poorly due to lack of rat-
ings and overfitting. In the dense setting, SVDFeature is
significantly better than CMF for citeulike-a and citeulike-
t but is inferior to CMF for Netflix. DeepMusic is still
slightly worse than CTR due to the reasons mentioned in
Section 1. To focus more specifically on comparing CDL
with CTR, we can see that for citeulike-a, 2-layer CDL out-
performs CTR by a margin of 4.2%∼6.0% in the sparse set-
ting and 3.3%∼4.6% in the dense setting. If we increase
the number of layers to 3 (L = 6), the margin will go up
to 5.8%∼8.0% and 4.3%∼5.8%, respectively. Similarly for
citeulike-t, 2-layer CDL outperforms CTR by a margin of
10.4%∼13.1% in the sparse setting and 4.7%∼7.6% in the
dense setting. When the number of layers is increased to 3,

Table 2: Recall@300 in the sparse setting (%)

#layers 1 2 3
citeulike-a 27.89 31.06 30.70
citeulike-t 32.58 34.67 35.48
Netflix 29.20 30.50 31.01

the margin will even go up to 11.0%∼14.9% and 5.2%∼8.2%,
respectively. For Netflix, 2-layer CDL outperforms CTR by
a margin of 1.9%∼5.9% in the sparse setting and 1.5%∼2.0%
in the dense setting. As we can see, seamless and success-
ful integration of deep learning and RS requires careful de-
signs to avoid overfitting and achieve significant performance
boost.

Table 1 shows the mAP for all models in the sparse set-
tings. We can see that the mAP of CDL is almost or more
than twice of CTR. Tables 2 and 3 show the recall@300 re-
sults when CDL with different numbers of layers are applied
to the three datasets under both the sparse and dense set-
tings. As we can see, for citeulike-t and Netflix, the recall
increases as the number of layers increases. For citeulike-a,
CDL starts to overfit when it exceeds two layers. Since
the standard deviation is always very small (4.31 × 10−5 ∼
9.31 × 10−3), we do not include it in the figures and tables
as it is not noticeable anyway.

Note that the results are somewhat different for the first
two datasets although they are from the same domain. This
is due to the different ways in which the datasets were col-
lected, as discussed above. Specifically, both the text in-
formation and the rating matrix in citeulike-t are much
sparser.5 By seamlessly integrating deep representation learn-
ing for content information and CF for the rating matrix,
CDL can handle both the sparse rating matrix and the

5Each article in citeulike-a has 66.6 words on average and
that for citeulike-t is 18.8.
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Figure 6: Performance of CDL based on recall@M
for different values of λn on citeulike-t. The left plot
is for L = 2 and the right one is for L = 6.

sparse text information much better and learn a much more
effective latent representation for each item and hence each
user.

Figure 6 shows the results for different values of λn us-
ing citeulike-t under the dense setting. We set λu = 0.01,
λv = 100, and L to 2 and 6. Similar phenomena are ob-
served when the number of layers and the value of P are
varied but they are omitted here due to space constraints.
As mentioned in the previous section, when λn is extremely
large, λn/λv will approach positive infinity so that CDL de-
generates to two separate models. In this case the latent
item representation will be learned by the SDAE in an un-
supervised manner and then it will be put directly into (a
simplified version of) the CTR. Consequently, there is no
interaction between the Bayesian SDAE and the collabora-
tive filtering component based on matrix factorization and
hence the prediction performance will suffer greatly. For the
other extreme when λn is extremely small, λn/λv will ap-
proach zero so that CDL degenerates to that in Figure 1 in
which the decoder of the Bayesian SDAE component essen-
tially vanishes. This way the encoder of the Bayesian SDAE
component will easily overfit the latent item vectors learned
by simple matrix factorization. As we can see in Figure 6,
the prediction performance degrades significantly as λn gets
very large or very small. When λn < 0.1, the recall@M is
already very close to (or even worse than) the result of PMF.

4.5 Qualitative Comparison
To gain a better insight into CDL, we first take a look at

two example users in the citeulike-t dataset and represent
the profile of each of them using the top three matched top-
ics. We examine the top 10 recommended articles returned
by a 3-layer (L = 6) CDL and CTR. The models are trained
under the sparse setting (P = 1). From Table 4, we can spec-
ulate that user I might be a computer scientist with focus on
tag recommendation, as clearly indicated by the first topic
in CDL and the second one in CTR. CDL correctly recom-
mends many articles on tagging systems while CTR focuses
on social networks instead. When digging into the data, we
find that the only rated article in the training data is ‘What
drives content tagging: the case of photos on Flickr’, which
is an article that talks about the impact of social networks
on tagging behaviors. This may explain why CTR focuses
its recommendation on social networks. On the other hand,
CDL can better understand the key points of the article (i.e.,
tagging and CF) to make appropriate recommendation ac-
cordingly. Consequently, the precision of CDL and CTR is
70% and 10%, respectively.

From the matched topics returned by both CDL and CTR,
user II might be a researcher on blood flow dynamic the-
ory particularly in the field of medical science. CDL cor-

Table 3: Recall@300 in the dense setting (%)

#layers 1 2 3
citeulike-a 58.35 59.43 59.31
citeulike-t 52.68 53.81 54.48
Netflix 69.26 70.40 70.42

rectly captures the user profile and achieves a precision of
100%. However, CTR recommends quite a few articles on
astronomy instead. When examining the data, we find that
the only rated article returned by CTR is ‘Simulating de-
formable particle suspensions using a coupled lattice-Boltzmann
and finite-element method’. As expected, this article is on
deformable particle suspension and the flow of blood cells.
CTR might have misinterpreted this article, focusing its rec-
ommendation on words like ‘flows’ and ‘formation’ sepa-
rately. This explains why CTR recommends articles like
‘Formation versus destruction: the evolution of the star clus-
ter population in galaxy mergers’ (formation) and ‘Macro-
scopic effects of the spectral structure in turbulent flows’
(flows). As a result, its precision is only 30%.

From these two users, we can see that with a more effective
representation, CDL can capture the key points of articles
and the user preferences more accurately (e.g., user I). Be-
sides, it can model the co-occurrence and relations of words
better (e.g., user II).

We next present another case study which is for the Net-
flix dataset under the dense setting (P = 10). In this case
study, we choose one user (user III) and vary the number of
ratings (positive feedback) in the training set given by the
user from 1 to 10. The partition of training and test data
remains the same for all other users. This is to examine
how the recommendation of CTR and CDL adapts as user
III expresses preference for more and more movies. Table 5
shows the recommendation lists of CTR and CDL when the
number of training samples is set to 2, 4, and 10. When
there are only two training samples, the two movies user III
likes are ‘Moonstruck’ and ‘True Romance’, which are both
romance movies. For now the precision of CTR and CDL is
close (20% and 30%). When two more samples are added,
the precision of CDL is boosted to 50% while that of CTR
remains unchanged (20%). That is because the two new
movies, ‘Johnny English’ and ‘American Beauty’, belong to
action and drama movies. CDL successfully captures the
user’s change of taste and gets two more recommendations
right but CTR fails to do so. Similar phenomena can be ob-
served when the number of training samples increases from
4 to 10. From this case study, we can see that CDL is sensi-
tive enough to changes of user taste and hence can provide
more accurate recommendation.

5. COMPLEXITY ANALYSIS AND IMPLE-
MENTATION

Following the update rules in this paper, the computa-
tional complexity of updating ui is O(K2J +K3), where K
is the dimensionality of the learned representation and J is
the number of items. The complexity for vj is O(K2I +
K3 + SK1), where I is the number of users, S is the size
of the vocabulary, and K1 is the dimensionality of the out-
put in the first layer. Note that the third term O(SK1)
is the cost of computing the output of the encoder and it
is dominated by the computation of the first layer. For



Table 4: Interpretability of the latent structures learned

user I (CDL) in user’s lib?

top 3 topics
1. search, image, query, images, queries, tagging, index, tags, searching, tag
2. social, online, internet, communities, sharing, networking, facebook, friends, ties, participation
3. collaborative, optimization, filtering, recommendation, contextual, planning, items, preferences

top 10 articles

1. The structure of collaborative tagging Systems yes
2. Usage patterns of collaborative tagging systems yes
3. Folksonomy as a complex network no
4. HT06, tagging paper, taxonomy, Flickr, academic article, to read yes
5. Why do tagging systems work yes
6. Information retrieval in folksonomies: search and ranking no
7. tagging, communities, vocabulary, evolution yes
8. The complex dynamics of collaborative tagging yes
9. Improved annotation of the blogosphere via autotagging and hierarchical clustering no
10. Collaborative tagging as a tripartite network yes

user I (CTR) in user’s lib?

top 3 topics
1. social, online, internet, communities, sharing, networking, facebook, friends, ties, participation
2. search, image, query, images, queries, tagging, index, tags, searching, tag
3. feedback, event, transformation, wikipedia, indicators, vitamin, log, indirect, taxonomy

top 10 articles

1. HT06, tagging paper, taxonomy, Flickr, academic article, to read yes
2. Structure and evolution of online social networks no
3. Group formation in large social networks: membership, growth, and evolution no
4. Measurement and analysis of online social networks no
5. A face(book) in the crowd: social searching vs. social browsing no
6. The strength of weak ties no
7. Flickr tag recommendation based on collective knowledge no
8. The computer-mediated communication network no
9. Social capital, self-esteem, and use of online social network sites: A longitudinal analysis no
10. Increasing participation in online communities: A framework for human-computer interaction no

user II (CDL) in user’s lib?

top 3 topics
1. flow, cloud, codes, matter, boundary, lattice, particles, galaxies, fluid, galaxy
2. mobile, membrane, wireless, sensor, mobility, lipid, traffic, infrastructure, monitoring, ad
3. hybrid, orientation, stress, fluctuations, load, temperature, centrality, mechanical, two-dimensional, heat

top 10 articles

1. Modeling the flow of dense suspensions of deformable particles in three dimensions yes
2. Simplified particulate model for coarse-grained hemodynamics simulations yes
3. Lattice Boltzmann simulations of blood flow: non-newtonian rheology and clotting processes yes
4. A genome-wide association study for celiac disease identifies risk variants yes
5. Efficient and accurate simulations of deformable particles yes
6. A multiscale model of thrombus development yes
7. Multiphase hemodynamic simulation of pulsatile flow in a coronary artery yes
8. Lattice Boltzmann modeling of thrombosis in giant aneurysms yes
9. A lattice Boltzmann simulation of clotting in stented aneursysms yes
10. Predicting dynamics and rheology of blood flow yes

user II (CTR) in user’s lib?

top 3 topics
1. flow, cloud, codes, matter, boundary, lattice, particles, galaxies, fluid, galaxy
2. transition, equations, dynamical, discrete, equation, dimensions, chaos, transitions, living, trust
3. mobile, membrane, wireless, sensor, mobility, lipid, traffic, infrastructure, monitoring, ad

top 10 articles

1. Multiphase hemodynamic simulation of pulsatile flow in a coronary artery yes
2. The metallicity evolution of star-forming galaxies from redshift 0 to 3 no
3. Formation versus destruction: the evolution of the star cluster population in galaxy mergers no
4. Clearing the gas from globular clusters no
5. Macroscopic effects of the spectral structure in turbulent flows no
6. The WiggleZ dark energy survey no
7. Lattice-Boltzmann simulation of blood flow in digitized vessel networks no
8. Global properties of ’ordinary’ early-type galaxies no
9. Proteus : a direct forcing method in the simulations of particulate flows yes
10. Analysis of mechanisms for platelet near-wall excess under arterial blood flow conditions yes

the update of all the weights and biases, the complexity
is O(JSK1) since the computation is dominated by the first
layer. Thus for a complete epoch the total time complexity
is O(JSK1 +K2J2 +K2I2 +K3).

All our experiments are conducted on servers with 2 In-
tel E5-2650 CPUs and 4 NVIDIA Tesla M2090 GPUs each.
Using the MATLAB implementation with GPU/C++ ac-
celeration, each epoch takes only about 40 seconds and each
run takes 200 epochs for the first two datasets. For Netflix
it takes about 60 seconds per epoch and needs much fewer
epochs (about 100) to get satisfactory recommendation per-
formance. Since Netflix is much larger than the other two
datasets, this shows that CDL is very scalable. We expect
that changing the implementation to a pure C++/CUDA
one would significantly reduce the time cost.

6. CONCLUSION AND FUTURE WORK
We have demonstrated in this paper that state-of-the-art

performance can be achieved by jointly performing deep rep-
resentation learning for the content information and collab-
orative filtering for the ratings (feedback) matrix. As far
as we know, CDL is the first hierarchical Bayesian model to
bridge the gap between state-of-the-art deep learning models
and RS. In terms of learning, besides the algorithm for at-
taining the MAP estimates, we also derive a sampling-based
algorithm for the Bayesian treatment of CDL as a Bayesian
generalized version of back-propagation.

Among the possible extensions that could be made to
CDL, the bag-of-words representation may be replaced by
more powerful alternatives, such as [20]. The Bayesian na-
ture of CDL also provides potential performance boost if
other side information is incorporated as in [37]. Besides, as



Table 5: Example user with recommended movies

User III
Movies in the training set: Moonstruck, True Romance, Johnny English, American Beauty, The
Princess Bride, Top Gun, Double Platinum, Rising Sun, Dead Poets Society, Waiting for Guffman

# training samples 2 4 10

Top 10 recommended
movies by CTR

Swordfish Pulp Fiction Best in Snow
A Fish Called Wanda A Clockwork Orange Chocolat
Terminator 2 Being John Malkovich Good Will Hunting
A Clockwork Orange Raising Arizona Monty Python and the Holy Grail
Sling Blade Sling Blade Being John Malkovich
Bridget Jones’s Diary Swordfish Raising Arizona
Raising Arizona A Fish Called Wanda The Graduate
A Streetcar Named Desire Saving Grace Swordfish
The Untouchables The Graduate Tootsie
The Full Monty Monster’s Ball Saving Private Ryan

# training samples 2 4 10

Top 10 recommended
movies by CDL

Snatch Pulp Fiction Good Will Hunting
The Big Lebowski Snatch Best in Show
Pulp Fiction The Usual Suspect The Big Lebowski
Kill Bill Kill Bill A Few Good Men
Raising Arizona Momento Monty Python and the Holy Grail
The Big Chill The Big Lebowski Pulp Fiction
Tootsie One Flew Over the Cuckoo’s Nest The Matrix
Sense and Sensibility As Good as It Gets Chocolat
Sling Blade Goodfellas The Usual Suspect
Swinger The Matrix CaddyShack

remarked above, CDL actually provides a framework that
can also admit deep learning models other than SDAE. One
promising choice is the convolutional neural network model
which, among other things, can explicitly take the context
and order of words into account. Further performance boost
may be possible when using such deep learning models.
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APPENDIX
A. BAYESIAN TREATMENT FOR CDL

For completeness we also derive a sampling-based algo-
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Figure 7: Sampling as generalized BP.

rithm for the Bayesian treatment of CDL. It turns out to
be a Bayesian and generalized version of the well-known
back-propagation (BP) learning algorithm. Due to space
constraints we only list the results here without detailed
derivation.

For W+: We denote the concatenation of Wl,∗n and

b
(n)
l as W+

l,∗n. Similarly, the concatenation of Xl,j∗ and 1

is denoted as X+
l,j∗. The subscripts of I are ignored. Then

p(W+
l,∗n|Xl−1,j∗,Xl,j∗, λs)

∝ N (W+
l,∗n|0, λ

−1
w I)N (Xl,∗n|σ(X+

l−1W
+
l,∗n), λ−1

s I).

For Xl,j∗ (l 6= L/2): Similarly, we denote the concatena-
tion of Wl and bl as W+

l and have

p(Xl,j∗|W+
l ,W

+
l+1,Xl−1,j∗,Xl+1,j∗λs)

∝ N (Xl,j∗|σ(X+
l−1,j∗W

+
l ), λ−1

s I)·

N (Xl+1,j∗|σ(X+
l,j∗W

+
l+1), λ−1

s I).

Note that for the last layer (l = L) the second Gaussian
would be N (Xc,j∗|Xl,j∗, λ

−1
s I) instead.

For Xl,j∗ (l = L/2): Similarly, we have

p(Xl,j∗|W+
l ,W

+
l+1,Xl−1,j∗,Xl+1,j∗, λs, λv,vj)

∝ N (Xl,j∗|σ(X+
l−1,j∗W

+
l ), λ−1

s I)·

N (Xl+1,j∗|σ(X+
l,j∗W

+
l+1), λ−1

s I)N (vj |Xl,j∗, λ
−1
v I).

For vj : The posterior p(vj |XL/2,j∗,R∗j ,C∗j , λv,U)

∝ N (vj |XT
L/2,j∗, λ

−1
v I)

∏
i

N (Rij |uT
i vj ,C

−1
ij ).

For ui: The posterior p(ui|Ri∗,V, λu,Ci∗)

∝ N (ui|0, λ−1
u I)

∏
j

(Rij |uT
i vj |C−1

ij ).

Interestingly, if λs goes to infinity and adaptive rejection
Metropolis sampling (which involves using the gradients of
the objective function to approximate the proposal distri-
bution) is used, the sampling for W+ turns out to be a
Bayesian generalized version of BP. Specifically, as Figure 7
shows, after getting the gradient of the loss function at one
point (the red dashed line on the left), the next sample would
be drawn in the region under that line, which is equivalent
to a probabilistic version of BP. If a sample is above the
curve of the loss function, a new tangent line (the black
dashed line on the right) would be added to better approx-
imate the distribution corresponding to the loss function.
After that, samples would be drawn from the region under
both lines. During the sampling, besides searching for lo-
cal optima using the gradients (MAP), the algorithm also
takes the variance into consideration. That is why we call it
Bayesian generalized back-propagation.


